

Report on Detailed Site Investigation for Contamination

Hospital Road REF, Randwick Campus Redevelopment Hospital Road, Randwick

> Prepared for Health Infrastructure

> > Project 72505.22 February 2021

Douglas Partners Geotechnics | Environment | Groundwater

Document History

Document details

Project No.	72505.22	Document No.	R.002.Rev2
Document title	Report on Detailed Si	te Investigation for	Contamination
	Hospital Road REF, F	Randwick Campus F	Redevelopment
Site address	Hospital Road, Randw	vick	
Report prepared for	Health Infrastructure		
File name	72505.22.R.002.Rev2	2	

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Joel James-Hall	Paul Gorman	16 December 2020	
Revision 1	Joel James-Hall	Paul Gorman	19 January 2021	
Revision 2	Joel James-Hall	Paul Gorman	22 February 2021	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	-	Miljan Tepic, Pricewaterhouse Coopers on behalf of Health Infrastructure
Revision 1	1	-	Miljan Tepic, Pricewaterhouse Coopers on behalf of Health Infrastructure
Revision 2	1	-	Miljan Tepic, Pricewaterhouse Coopers on behalf of Health Infrastructure

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

	Signature	Date
Author	(John	22 February 2021
Reviewer	P Somman	22 February 2021

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666

Executive Summary

This report presents the results of a Detailed Site Investigation for Contamination (DSI) undertaken for the proposed Hospital Road REF as a part of the larger Randwick Campus Redevelopment (RCR) project, located at Hospital Road, Randwick. The site is proposed for excavation and lowering, with associated infrastructure relocation and piling works.

The investigation comprised a review of previous investigations within the larger RCR development which comprise whole or parts of the current site, in addition to an intrusive soil and groundwater sampling investigation targeting data gaps (following previous investigations) and measuring the potential impacts of the ongoing construction activities in areas of the site previously assessed.

The previous preliminary site investigation (PSI) identified potential areas of environmental concern (AEC) as follows:

- Imported fill;
- Demolition of dwellings containing asbestos and / or lead paint;
- Construction support activities;
- Explosives associated with former air raid shelter(s) ('zig zag' slit trenches) noted on 1943 historical aerial imagery along Hospital Road; and
- Neighbouring or nearby commercial activities including the operational hospital, former butcher / medical practice / orthodontist and an EPA notified dry cleaning business located 300 m to the north-east.

Previous investigations within or relevant to the site detected slightly elevated levels of metals in groundwater, however, these were considered to be indicative of regional urban groundwater quality, rather than an off- or on-site contamination source. Previous soil results within the site indicated elevated levels of metals and polycyclic aromatic hydrocarbons (i.e., as benzo(a)pyrene) broadly spread across the site in fill, and localised exceedances of carcinogenic polycyclic aromatic hydrocarbons at three locations. Exceedances of environmental based criteria for select metals and benzo(a)pyrene were not deemed to be a significant risk for the proposed development of the site.

Further exceedances were noted within roadbase materials in the footprint of the former Eurimbla Avenue (part of which sits within the northern arm of the site) for metals, polycyclic aromatic hydrocarbons and petroleum hydrocarbons, however, these were previously managed through disposal under a resource recovery order. Asbestos in soil (as bonded cement products) was noted throughout the larger RCR area, largely attributable to the previous residential dwellings which had been demolished, with the impacts mostly localised to shallower fill (i.e., <500 mm deep).

Contamination identified within the Stage 1 Randwick Campus Redevelopment (including a stormwater easement in Stage 2) was previously remediated and validated to be suitable for the proposed development, which comprises part of the current SCH1/CCCC development.

The current intrusive investigation noted similar results to previous investigations with exceedances of environmental based criteria for select metals and benzo(a)pyrene, in addition to exceedances of healthbased criteria for carcinogenic polycyclic aromatic hydrocarbons at one location. Asbestos was also detected at one test location adjacent to Hospital Road, and potentially exists in other parts of the site, including within the RCR development area. Groundwater results indicated similar minor elevated levels

of metals associated with regional water quality, in addition to minor detections of benzo(a)pyrene, likely associated with the nearby elevated levels present in soil.

Based upon the results presented within this report it is considered that there is a low to medium risk of contamination at the site, primarily related to existing fill and the (potential) presence of asbestos and PAH. It is therefore recommended to develop a Remediation Action Plan (RAP) to address contamination at the site. The RAP will provide strategies for:

- Assessing the data available to determine areas of environmental concern (AEC) requiring remediation;
- Remediation of the AEC;
- Management of waste including asbestos impacts in soil and roadbase materials;
- Management of excavations and tracking of soil movement within the site and off site;
- Management of imported materials;
- Asbestos and unexpected finds management; and
- Further testing (including validation of identified contamination) as required.

It is considered that following the successful implementation of a RAP the site will be rendered suitable for the proposed development.

This report must be read in its entirety to inform any decision making or future planning.

Table of Contents

Page

1.	Introduction1			
2.	Proposed Development2			
3.	Site Description			
4.	Scope	e of Works	.3	
5.	Site H	listory Summary	5	
6.	Previo	Previous Investigations		
6.1 Stage 1 and 2 RCR PSI (DP, 2018)			.5	
		6.1.2 Groundwater	.6	
		6.1.3 Preliminary Waste Classification	.6	
	6.2	Stage 1 and 2 RCR DSI (DP, 2019a)	.6	
		6.2.1 Soil	.7	
		6.2.2 Asbestos	.7	
		6.2.3 Groundwater	.8	
	6.2	6.2.4 Preliminary waste Classification	.0 0	
	0.5		.0	
	6.4	IASB Addition DSI (DP, 2019d)	.9 .0	
		6.4.2 Preliminary Waste Classification	.9 Q	
		6.4.3 Subsurface Profile	10	
	6.5	Remediation Action Plan (DP, 2019b)	10	
	6.6	Stage 1 Validation Report (DP, 2019c)	10	
	6.7	Stage 2 In-Situ Waste Classification Assessment (DP, 2019e)	11	
	6.8	"Tear Drop" Area Assessment (DP, 2020b)	12	
	6.9	SCH1 / CCCC PSI, DSI and RAP (DP, 2020a; DP, 2020b; DP, 2020c)	12	
7.	Prelim	ninary Conceptual Site Model	13	
	7.1	Known and Potential Contamination Sources and Contaminants of Concern	13	
	7.2	Potential Receptors	15	
		7.2.1 Human Health Receptors	15	
		7.2.2 Environmental Receptors	15	
		7.2.3 Potential Pathways	15	
	7.3	Summary of Preliminary CSM	15	
8.	Field	Work	16	
	8.1	Sample Location and Rationale	16	
	8.2	Sampling Procedure	17	

		8.2.1 8.2.2	Soil Groundwater	17 18
	8.3	Analytic	cal Rationale	18
	8.4	Quality	Assurance and Quality Control (QA / QC)	19
	8.5	Data Q	uality Indicators	19
9.	Site A	ssessm	ent Criteria	19
10.	Fieldv	vork Res	sults (2020 Sampling)	20
11.	Labor	atory Re	esults	21
	11.1	Soil		21
	11.2	Ground	lwater	22
12.	Prelin	ninary W	/aste Classification	23
13.	Discu	ssion		24
	13.1	Soils		24
	13.2	Asbesto	0S	25
	13.3	Ground	lwater	25
	13.4	Waste		25
14.	Updat	ed Cond	ceptual Site Model	26
15.	Concl	usion ar	nd Recommendations	27
16.	Refer	ences		27
17.	Limita	tions		28

Appendix A:	Notes About this Report	
	Drawings	
Appendix B:	Site Photographs	
Appendix C:	Summary Results	
Appendix D:	QA / QC	
Appendix E:	Logs	
Appendix F:	Site Assessment Criteria	
Appendix G:	Laboratory Documentation	

Report on Detailed Site Investigation for Contamination Hospital Road REF, Randwick Campus Redevelopment Hospital Road, Randwick

1. Introduction

This report presents the results of a Detailed Site Investigation (DSI) for Contamination undertaken for the proposed Hospital Road REF, the "site", as shown in Drawings 1 and 2, Appendix A), part of the larger Randwick Campus Redevelopment (RCR) located at Hospital Road, Randwick. The investigation was commissioned by Pricewaterhouse Coopers (PwC) on behalf of Health Infrastructure and was undertaken in accordance with the Douglas Partners Pty Ltd (DP) proposal SYD200742.P.002 dated 23 November 2020.

The investigation was carried out in consultation with PwC, the project managers for HI, to support a Review of Environmental Effects (REF) submission for the proposed development.

It is understood that the larger RCR project comprises multiple stages (parts as shown in Drawing 1, Appendix A) which includes the current development of a new multi-storey Acute Services Building within Stage 1 (ASB) and Integrated Acute Services Building (IASB) addition located to the south of the current site, along Hospital Road, and the future planned Health Translation Hub (HTH) in the north west part of Stage 2 and the proposed Sydney Children's Hospital (SCH1) & Comprehensive Cancer Clinic (CCCC) located immediately to the west.

It is noted that the current site does not include the proposed SCH1 / CCCC development which is to be subject to a separate planning approval pathway. Separate environmental reports have been prepared to support the SCH1 / CCCC separate planning approval.

DP has previously completed investigation, remediation, and validation reports in relation to the whole and parts of the RCR development, as summarised in Section 6. A preliminary site investigation (PSI) was completed for the proposed Hospital Road REF (DP, 2020a) which comprised a summary of previous relevant desktop information for the larger RCR area and supplementary information, as pertaining to the current site boundary.

It is noted that, with the integration of the proposed development with the larger RCR project there is a consequential overlap of the "site" boundary with the Stage 2 RCR, SCH1 / CCCC and IASB boundaries as established in previous reports mentioned in Section 6. These overlaps are shown on Drawings 1 and 2 in Appendix A. The contamination status assessment with relevance to these overlaps is discussed where appropriate within this report.

The site is proposed for excavation and lowering, with associated infrastructure relocation and piling works, as discussed further in Section 2.

The objective of this DSI is to assess the suitability of the site, from a contamination perspective, for the proposed development and to comment on the need for further investigation and / or remediation or management (if required), such that the site can be stated to be suitable for the proposed development, from a contamination perspective. This investigation also provides a revised preliminary *in-situ* waste classification based on the previous and current soil testing results.

2. Proposed Development

It is understood that the proposed developed of the site comprises the partial lowering and upgrading of 130 m of the northern part of Hospital Road including lowering of Hospital Road North (Stage 2). The road will connect to the current HRL Stage 1 (to the south), and slope down from about RL 51.0 m at the southern end to RL 45.8 m at the northern end adjacent to the Loading Dock.

The proposed REF scope will also involve the following:

- Diversion of services from Hospital Road to areas outside of Hospital Road;
- Upgrading the pedestrian footpaths / roadway at the intersection of Hospital Road and High Street;
- Piling along the eastern, western and northern sections of the site area, including east to west piling along the High St frontage, as indicated in Drawing 1, Appendix A; and
- Remediation as may be required under the Remediation Action Plan for the site.

3. Site Description

The site is located approximately 7 km south-east of the Sydney CBD (refer to locality on Drawing 1, Appendix A). The site comprises the northern portion of Hospital Road, Randwick, with access for parking and deliveries to the north-western parts of the hospital and the north eastern portion of the RCR development site.

The site is located within the Randwick Health and Education Precinct (RHEP). The RHEP includes the Randwick Hospital Campus (RHC). The RHC is home to the (current) Sydney Children's Hospital (SCH), Prince of Wales Hospital (POWH), the Royal Hospital for Women (RHW), the Prince of Wales Private Hospital (POWPH), University of New South Wales (UNSW) Kensington Campus and several other medical research institutes including the Children's Cancer Institute (CCI).

Table 1 below presents site identification details.

Table 1: Site Identification

Item	Details	
Allotment Identification	Lot 35, Deposited Plan 7745	
	Part of Lot 1, Deposited Plan 870720	
Street Address	Hospital Road, Randwick	
Site Coordinates (centroid)	337103 m East, 6245603 m North (GDA 94 Zone 56)	
Site Area	1910 m ²	
Local Government Area	Randwick City Council	
Zoning	SP2 - Health Services Facilities	
	(previous SP2 and residential)	
Current Land-use	Public road, construction site compound	
Proposed Land-use	Hospital Infrastructure	

At the time of preparing this report, Hospital Road remained open for public access. The northern strip of the site was being used as part of a construction site compound associated with the ASB and IASB construction works further south. The general layout of the site is shown as the background aerial photograph on Drawing 1, Appendix A.

The land uses surrounding the site include:

- North High Street, then residential and commercial properties;
- East Randwick Hospital Campus;
- South ASB and IASB development areas; and
- West SCH1 / CCCC and HTH future development sites, Botany Street, then UNSW.

4. Scope of Works

The scope of works for the DSI comprised:

- Review and summary of DP (2020a);
- Review and summarise relevant intrusive investigation reports previously completed within and nearby the site as a part of the larger RCR development;
- Set out, levelling and scanning for buried services in areas of additional intrusive investigations;
- Drilling of eight boreholes using a combination of non-destructive drilling (NDD) and hand tools to depths of up to 1.9 m below ground level (bgl), continued with a track mounted drilling rig using a combination of solid flight augers, rotary drilling and coring, continuing to depths of 17.5 m bgl into sandstone bedrock for geotechnical purposes;

- Collection of samples from the boreholes at regular intervals or upon signs of contamination (e.g., staining or odours) extending a minimum of 0.5 m into natural soils;
- Collection of additional samples from four NDD excavations completed by Christie Civil within the northern part of Hospital Road at regular intervals or upon signs of contamination using hand tools, extending into natural soils or refusal due to exposed services or encountering bedrock;
- Field testing of selected recovered soil samples using a photo-ionisation detector (PID) to screen for volatile organic compound (VOC);
- Dispatch of selected soil samples and quality control samples to a NATA accredited laboratory for a range of contaminants previously identified in a Conceptual Site Model (CSM) including:
 - o Metals / metalloids (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn);
 - o Total recoverable hydrocarbons (TRH);
 - o Benzene, toluene, ethylbenzene and xylenes (BTEX);
 - o Polycyclic aromatic hydrocarbons (PAH);
 - o Organochlorine pesticides (OCP);
 - o Organophosphorus pesticides (OPP);
 - o Polychlorinated biphenyls (PCB);
 - o Phenols;
 - o Asbestos (presence / absence in soil);
 - o Volatile organic compounds (VOC);
 - o Explosives; and
 - o Ammonia.
- Installation of groundwater monitoring wells at four of the completed boreholes;
- Development, measurement of groundwater levels and sampling from two groundwater monitoring wells, including one previously installed within the RCR area;
- Dispatch of two groundwater samples and quality control samples to a NATA accredited laboratory for a range of contaminants previously identified in a CSM including:
 - o Metals / metalloids (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn);
 - o TRH;
 - o BTEX;
 - o PAH:
 - o OCP;
 - o OPP:
 - o PCB;
 - o VOC; and
 - o Phenols.
- Preparation of this report.

It is noted that the above scope was undertaken concurrently with an investigation for the proposed SCH1 / CCCC development and as such comprised three test locations outside (and not proximate) of the current site boundary.

5. Site History Summary

DP (2020a) comprised a review of previous desktop and intrusive investigations within the larger RCR development area. Historical information indicated that the majority of the site has been undeveloped land between a residential area to the west (along Eurimbla Avenue) and Prince of Wales Hospital to the east, before being redeveloped into a road by 1970, the north western part of the site had been in use for limited low-density commercial operations (i.e., mixed-commercial stores). Nearby land-uses have been predominately residential, with the progressive upgrading / expansion of the Prince of Wales hospital to the east, and the University of New South Wales to the west, further limited medical land-uses were noted (i.e., dental / general practice) near the site.

More recently, the northern arm of the site has largely been used as part of a construction site compound (i.e., site sheds and storage) in support of the construction works within ASB and IASB.

Potential areas of environmental concern (AEC) identified through the site history review, walkover, and review of previous investigations (as documented in DP, 2020a) included:

- Imported fill;
- Demolition of dwellings containing asbestos and / or lead paint;
- Construction support activities;
- Explosives associated with former air raid shelter(s) ('zig zag' slit trenches) noted on 1943 historical aerial imagery along Hospital Road; and
- Neighbouring or nearby commercial activities including the operational hospital, former butcher / medical practice / orthodontist and an EPA notified dry cleaning business located 300 m to the north-east.

6. **Previous Investigations**

Results of the previous investigations relevant to the current site are summarised in the attached Tables C1 (soil), C2 (groundwater) and C3 (preliminary waste classification), Appendix C. The following sub-sections provide a summary of the overall results of the relevant investigations. All previous test locations, as reported in DP (2018), DP (2019a) and DP (2019d), are shown in the attached Drawing 3, (Appendix A), whilst Drawing 4, (Appendix A) shows test locations only relevant to the current site boundary.

6.1 Stage 1 and 2 RCR PSI (DP, 2018)

DP (2018) comprised a review of available desktop information in addition to a limited intrusive investigation comprising soil and groundwater sampling and testing from 31 boreholes (BH 1 to BH 9, BH 101 to BH 122).

6.1.1 Soil

Results of the limited soil testing indicated exceedances of environmental based limits for benzo(a)pyrene (BaP), nickel, copper and zinc. For the test locations within the current site this comprised:

• Nickel in BH3/0.1-0.2 at 79 mg/kg which exceeded the EIL for commercial industrial (10 mg/kg) and residential / open space (9 mg/kg).

Additional exceedances were noted in roadbase samples located beneath Eurimbla Avenue (refer Drawing 1, Appendix A for previous location of Eurimbla Avenue), including environmental exceedances for copper, TRH (fractions C_{10} - C_{16} and C_{16} - C_{34}), B(a)P in addition to exceedances of health based criterial (HIL) for B(a)P TEQ and TRH (fraction C_{16} - C_{34} - naphthalene, for vapour intrusion BH8). None of these locations were within the current site, however they are considered indicative of potential contamination within soils beneath the former Eurimbla Avenue, part of which passes through the northern arm of the site.

Bonded asbestos was noted at one location (Stage 2 area, BH106), outside the current site boundary.

6.1.2 Groundwater

No signs of contamination concern were noted during groundwater well development or sampling from Bore BH7 (outside the current site, but in close proximity). No phase separated hydrocarbons (PSH) were observed or detected by the interface meter.

Concentrations of PAH, TRH / BTEX, VOC, OCP, OPP, PCB, phenols were either below detection or within the adopted groundwater investigation levels (GIL) with the exception of copper and zinc, which were considered to be typical of groundwater conditions in urban settings, rather than a specific off- or on-site contamination source.

6.1.3 Preliminary Waste Classification

Based on the results, the filling encountered in the bores at the RCR development site was preliminarily classified for off-site disposal purposes as General Solid Waste (non-putrescible), with the exception of the roadbase material and exceedances at BH3 (nickel) and BH106 (asbestos) both outside the current site.

6.2 Stage 1 and 2 RCR DSI (DP, 2019a)

DP (2019a) comprised a review of the DP (2018) PSI previously completed for the Stage 1 and 2 RCR areas, in addition to further soil and groundwater testing. The DSI comprised work in stages, pre- and post-demolition of the residential properties, including:

- Fifteen boreholes (BH201-215) using hand tools and a drilling rig at two locations (BH202 and BH204) to facilitate the installation of groundwater monitoring wells;
- Excavation of 11 test pits (TP1-11) pre-demolition;

- Sampling groundwater from seven wells (BH202, BH204, BH10, BH11, BH14, BH16 and BH17) across two sampling events;
- Excavation ten test pits along the former Eurimbla Avenue (EA1 EA10), to assess against the Recovered Aggregate Order (NSW EPA, 2014); and
- Excavation of twenty-six test pits post-demolition TP301-304, 305A-310A, and TP314-329) targeting the footprints of the demolished residential buildings.

6.2.1 Soil

Results of the limited soil testing indicated exceedances of environmental-based limits for benzo(a)pyrene (BaP), nickel, copper and zinc and health-based exceedances for PCB, PAH and asbestos. For the test locations within the current site this comprised:

• B(a)P in sample BH210/0.2-0.3 exceeding the ESL for B(a)P (urban residential, 0.7 mg/kg).

Overall, the soils results indicated exceedances of health and ecological criteria (predominantly ecological) for PAH (in particular B(a)P) in the larger RCR area. Statistical analysis was performed for all results and the various 95% UCL of the mean concentrations were within the health-based criteria defined for the site. 95% UCL mean concentrations for fill from the 0-0.3 m depth range and fill between 0.3 m and top of natural soil (excluding roadbase and asphalt) also exceeded the ESL guideline for urban residential (0.7 mg/kg).

Exceedances were also noted for total recoverable hydrocarbons, PAH and naphthalene in road-base materials beneath Eurimbla Avenue, these materials however, were found to be suitable for re-use under the Recovered Aggregate Order (NSW EPA, 2014).

6.2.2 Asbestos

Individual suspected asbestos containing material (ACM) fragments were located in BH106, TP305, 307, 310, 315, 318, 319, 323, 326, 329, and TP10 in the depth range of 0 - 0.2 m during either excavation/drilling or during field screening of recovered samples through a 7 mm sieve. ACM was observed in slightly deeper fill in TP9 and TP319 at a depth of 0.4 - 0.5 m. Select recovered potential ACM fragments and additional 500 ml soil samples from each of the locations were sent to the laboratory for analysis for ACM and Asbestos Fines (AF) and Fibrous Asbestos (FA). Chrysotile asbestos was confirmed in laboratory testing to be present in the material collected from BH106, whilst chrysotile, amosite and crocidolite were detected in the fragments collected from TP9 and TP10. It is noted that potential ACM recovered from the 300 series test pits during field screening was assumed to contain asbestos based on previous results and similar materials encountered. Of these, test locations TP318 and TP329 were positioned within the current site boundary.

Surficial ACM was observed at multiple locations in between test locations on the ground surface. None of these locations are within the current site, but are considered indicative of the potential for asbestos to be in fill within the RCR area (including the site). Refer to Drawing 5, Appendix A for the location of previous asbestos finds relative to the current site boundary.

6.2.3 Groundwater

Groundwater results indicated only elevated levels of heavy metals above the groundwater investigation levels (GIL), however, these were considered to be indicative of the regional groundwater quality in urban settings rather than an off- or on-site contamination source.

Groundwater depths were measured from 3.56 m to 5.96 m bgl across the RCR development area. Based on the measured groundwater depths a flow direction to the west and south west was inferred.

No further groundwater investigations were recommended for the Stage 1 and 2 areas.

6.2.4 Preliminary Waste Classification

Based on the results of the DSI and previous PSI, the filling encountered at the site was preliminarily classified for off-site disposal purposes as General Solid Waste (non-putrescible), with the exception of:

- Asphalt and roadbase from Eurimbla Avenue which was assessed to be suitable under the Recovered Aggregate Order (NSW EPA, 2014); and
- Fill the vicinity of TP318 and TP329 (and on the surface to the south of TP329, near TP1) which were confirmed or suspected to contain asbestos, which was to be preliminarily classified as General Solid Waste (non-putrescible) Special Waste (asbestos).

6.3 Subsurface Profile

The subsurface profile encountered in the bores and test pits across the Stage 1 and Stage 2 RCR areas (as presented in DP, 2018 and DP, 2019a) have been previously summarised as below:

- **PAVEMENT / SLAB:** A 30 70 mm thick asphaltic concrete surfacing overlying roadbase gravel to depths of up to 0.4 m was encountered in within roadways. Brick pavement or concrete pavers / slab up to 0.1 m thick were observed in and nearby previous residential properties;
- **FILLING:** (topsoil): Dark brown, fine to medium slightly silty sand topsoil was encountered to depths of 0.05 0.3 m; Some locations contained sandstone boulders, terracotta, glass, brick fragments and some slag and tile fragments;
- FILLING: Sandy filling with fine to medium gravel to depths of between 0.2 m and 1.4 m. Sandy filling and / or ripped sandstone was encountered into depths of between 0.2 m and 2.3 m. Trace of charcoal, clinker / slag was observed in BH201, BH213 and TP10, and anthropogenic material including brick, terracotta and glass fragments, metal sheeting, and asphaltic gravels were noted in in the majority of test locations;
- SAND / Clayey SAND: At the majority of test locations fine to medium sand, ranging from yellow to grey-brown in colour, was encountered in all boreholes and test pits. Clayey sand was encountered in BH117 and BH118 at depths of 1.4 m and 1.0 m respectively. Dense clayey sand (BH6, 5.5 m and clay (BH9, 5.2 m) was noted at two locations. Trace quantities of charcoal was observed at BH207 and BH208; and
- **BEDROCK:** In boreholes BH1 to BH9, the top of bedrock ranged between depths of 1.5 m (RL 53.1 m) and 6.9 m (RL 40.7 m). Very low to low strength sandstone was encountered in BH202 and BH204 at depths of 3.0 m and 4.7 m, respectively.

6.4 IASB Addition DSI (DP, 2019d)

DP (2019d) comprised a review of historical information and testing targeted in the area adjoining the Stage 1 and 2 RCR development area (refer Drawing 1, Appendix A) for the proposed IASB addition which was to include lowering of part of Hospital Road in addition to connections / modifications within the ASB site to connect to the adjoining Prince of Wales Hospital to the east. The intrusive investigation comprised seven test pits (TP401 to TP407) conducted within Hospital Road and sealed surfaces within the Prince of Wales Hospital to the east. No further groundwater testing was conducted based upon previous recommendations of the Stage 1 & 2 RCR DSI (DP, 2019a).

It is noted that none of the test locations for IASB DSI are within the current site.

6.4.1 Soil

Analytical results indicated concentrations of BTEX, phenols, OCP, OPP, PCB and light fraction TRH below laboratory limits of reporting (LOR) for all soil samples. Metal concentrations were either less than the LOR and / or less than the adopted site assessment criteria (SAC) for all samples tested.

The exceedance of health-based investigation levels (Residential B) for carcinogenic PAH and exceedances of the ESL for B(a)P and TRH (C_{16} - C_{34}) were noted in the roadbase samples at TP401 and TP402.

Chrysotile, amosite and crocidolite asbestos was detected in the roadbase sample from TP402/0.2-0.25 and AF/FA results were 0.0328% w/w which exceeded the HSL (B) of 0.001% w/w. The asbestos was considered to be associated with building rubble in roadbase at this location. No further asbestos was detected in delineation samples or at other test locations. Refer to Drawing 5, Appendix A for previous asbestos finds within the Stage 2 RCR development area (near the current site boundary).

Results for selected explosive analytes were below detected in all samples analysed. Ammonia was above detection in one sample (TP407/0.35) however, the level did not exceed the screening level adopted for the site (50 mg/kg).

6.4.2 Preliminary Waste Classification

The filling encountered in the test pits at the site was preliminarily classified for off-site disposal purposes as General Solid Waste (non-putrescible), with the exception roadbase in the vicinity of TP402 which was confirmed to contain asbestos, this material or any other impacted fill was to be classified at a minimum as Special Waste (asbestos).

It is noted whilst there were exceedances of CT1 and CT2 for lead and B(a)P, associated with primarily roadbase materials, that additional toxicity characteristic leaching procedure (TCLP) tests resulted in combined concentrations within CT1 and TCLP1 respectively.

6.4.3 Subsurface Profile

The subsurface profile beneath Hospital Road (as reported in DP, 2019d, south of the current site) and its verges were previously summarised as:

- **PAVEMENT / SLAB:** A 30 70 mm thick asphaltic concrete surfacing; overlying;
- FILL (ROADBASE): Dark brown medium grained sand with fine to coarse igneous gravel and medium grained sandstone gravel from 0.2-0.45 m. In test pits TP401, TP405 and TP406 fill (roadbase) was encountered directly above natural sand. No roadbase was encountered in TP407;
- **FILL:** Yellow fine to medium grained sand with fine to coarse sandstone gravel and igneous gravel with plastic, crushed cement, crushed brick to depths of between 0.45 and 0.95 m depth. A hydrocarbon odour was noted in TP402. Trace ash and charcoal were noted in TP407 at 0.35-0.4 m depth. At a depth below 0.55 m in TP407, large sandstone cobbles were observed with cement gravel inclusions;
- **SAND:** Variably yellow, orange and white fine to medium sand with some fine to coarse sandstone gravel; some roots and organic staining were noted in TP405; and
- **BEDROCK:** Sandstone encountered in TP401 at 0.7 m depth and at depths of between 3.4 m and 6 m in BH1, BH2, BH10 and BH11.

6.5 Remediation Action Plan (DP, 2019b)

DP (2019b) was prepared for the ASB (Stage 1) and IASB development areas only, and was the culmination of multiple revisions from additional works including the post-demolition sampling in DP (2019a) and the IASB addition investigation (DP, 2019d). The RAP outlined strategies for managing and remediating identified contamination, which primarily comprised asbestos in soils and PAH, in order to render the ASB and IASB areas suitable for the proposed hospital development. The remediation strategy was primarily to comprise of the removal of soils exceeding health-based criteria, on-site management of minor ecological exceedances and the removal of asphalt and roadbase material to be recycled as recovered aggregate (NSW EPA, 2014) and / or disposed off-site under an assigned waste classification.

6.6 Stage 1 Validation Report (DP, 2019c)

The Stage 1 validation report was prepared for the ASB development area and comprised a review of information related to remediation works conducted within the Stage 1 area (and part of a stormwater easement within Stage 2) as informed by the RAP (DP, 2019b). It was concluded that the remediation works had successfully removed any identified contamination and rendered the Stage 1 area suitable for the proposed hospital development. This report was subject to an external site audit by a NSW Environment Protection Authority (EPA) accredited Site Auditor under the *Contaminated Land Management Act 1997*. An associated Site Audit Statement (SAS) and Site Audit Report (SAR) was provided to meet the planning consent under State Significant Development (SSD-9113) and Randwick City Council Development Approval (DA/208/2018).

It is noted however, that this report did not include other areas of the greater RCR development footprint including the IASB addition boundary and the Stage 2 area. Parts of the southern (within Stage 1) and northern extents (within the Stage 2 stormwater easement) of the current site boundary are within the boundary of this validation report and associated SAR / SAS, as shown on Drawing 2, Appendix A.

The Stage 1 Validation works also included remediation of an asbestos 'hot spot' located in the north of Stage 2 (green hatched area indicated on Drawing 5, Appendix A). This comprised the removal of the asbestos contaminated fill followed by validation of the underlying soils as a part of a VENM assessment.

It is also noted that of the test locations within the current site boundary, reported with exceedances of the adopted SAC (Section 6.2 and 6.3 above) none of the test locations were subject to remediation and validation under DP (2019c).

6.7 Stage 2 *In-Situ* Waste Classification Assessment (DP, 2019e)

The Stage 2 *In-Situ* waste classification assessment was undertaken following completion of the Stage 1 validation works which was undertaken in order to assist with providing an updated assessment of the soils to facilitate off-site disposal of the remaining fill within the area. The investigation comprised a review previous results and twenty-eight additional test pits (refer Drawing 3, Appendix A) which were positioned to assess any potential impacts and changes in the site conditions since the DSI investigation from ongoing construction and earthworks activities, with an emphasis on previously identified contaminants i.e. metals, PAH and asbestos. The investigation did not include the north eastern part of Stage 2 which was occupied by the site sheds or the stormwater easement which was validated during the Stage 1 works.

The results of the investigation indicated minor detections of metals with multiple locations exceeding the currently adopted EILs (refer Section 9 & Appendix F) for nickel, and one location for zinc. Minor detections of benzo(a)pyrene were also noted, which are above the current ESL (refer Section 9 & Appendix F) at four locations. These results, however, are considered to be similar to the previous results. Minor detection of OCP as aldrin and dieldrin was noted at three test locations, with one location above 2 mg/kg, however, these concentrations are within the HIL (10 mg/kg) (refer Section 9 & Appendix F).

No asbestos was detected by the laboratory from samples recovered within the test pits, however, surficial asbestos was observed within the "Tear Drop" shaped area at four locations.

Based on the results an *in-situ* waste classification was provided consisting of:

- General Solid Waste (non-putrescible) Special Waste (asbestos) for the "Tear Drop" shaped area and previously identified asbestos as shown on Drawing 5, Appendix A; and
- General Solid Waste (non-putrescible) for the remainder of Stage 2 (excluding areas under the site sheds and the stormwater easement).

6.8 "Tear Drop" Area Assessment (DP, 2020b)

DP (2020b) comprised an assessment of a small area surrounding TP319 and TP318 (refer Drawing 5, Appendix A) within the Stage 2 RCR development area in which asbestos contamination had previously been identified (both in ground and on the surface), but not remediated under the validation works (DP, 2019c). The assessment of the area (referred to as the tear drop based on the shape) was commissioned by Lend Lease Building Pty Limited (LL) to assess the suitability for temporary use as a storage area in relation to the construction of the ASB in Stage 1 of the RCR project.

In response to DP (2019a) LL arranged to have the upper 200 - 300 mm of soils (localised up to 500 mm) stripped from the "tear drop" area and disposed to landfill as Special Waste (Asbestos). Following the strip, DP conducted a surface clearance and then a geotextile fabric was laid and verified spoil material from piling works within Stage 1 RCR was used to backfill to current surface levels.

The report concluded that the area was suitable, following excavation, clearances and backfilling to be used as a storage area for the Stage 1 RCR construction works. As with the remainder of Stage 2, the "tear drop' area was also reported to be subject to further investigation, remediation and validation before being declared suitable, from a contamination standpoint, for any other future long-term land use.

Whilst outside of the current site this report is considered indicative of the risk of further asbestos to be in fill within parts of the RCR, particularly within areas outside of the Stage 1 validation report.

6.9 SCH1 / CCCC PSI, DSI and RAP (DP, 2020a; DP, 2020b; DP, 2020c)

The investigations for the proposed SCH1 / CCCC development comprised a staged assessment, including a desktop review of available information including the previous investigations summarised within this report, limited intrusive sampling from eight boreholes (BH601 to 608) and four test pits (TP601-604), and the development of a RAP to manage the identified contamination risks.

It is noted that there is an overlap of the SCH1 / CCCC and Hospital Road REF investigation boundaries, and that the SCH1 / CCCC reports included test locations within the current site as being indicative of potential contamination risks within the nearby SCH1 / CCCC site.

Intrusive testing results indicated health-based exceedances of the adopted SAC:

- Benzo(a)pyrene TEQ at BH604/1.0-1.2 (4.6 mg/kg) which exceeded HIL B (4 mg/kg); and
- Asbestos detected at TP602/0.7-0.9.

Additional ecological-based exceedances were noted as follows:

- Copper at TP601/0.1-0.3 (67 mg/kg);
- Nickel at TP603/0.3-0.5 (19 mg/kg), BH601/0.4-0.5 (22 mg/kg), BH603/0.5-0.7 (27 mg.kg), BH603/0.8-1.0 (14 mg/kg) and BH605/0.4-0.5 (35 mg/kg) which exceeded the EIL of 9 mg/kg;
- Zinc at BH603/0.8-1.0 (410 mg/kg) and BH604/1.0-1.2 (240 mg/kg) which exceeded the EIL of 240 mg/kg; and
- Benzo(a)pyrene at TP602/0.7-0.9 (0.96 mg/kg) and BH604/1.0-1.2 (3.3 mg/kg) which exceeded the ESL of 0.7 mg/kg.

Exceedances of ecological-based criteria were noted for metals (copper, nickel and zinc) and B(a)P. The elevated levels of B(a)P are not considered to be significant when compared against the higher reliability CRC CARE (2017) guidelines which provides 95% confidence intervals of 21-135 mg/kg (33 mg/kg mean value) for urban, residential and public open space land-use.

The elevated levels of metals were also previously not considered to be significant given the minor elevated levels, and that they could be appropriately managed by using suitability appropriate landscaping materials which meet both the SAC and horticultural requirements. The relative impact of these exceedances was also considered minor given much of the proposed development was to comprise building footprints, roads and pathways with limited landscaping areas.

The rationale, methodology and results of these intrusive investigations are outlined in more detail from Section 8 onwards in this report.

7. Preliminary Conceptual Site Model

A Conceptual Site Model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or in the future i.e., it enables an assessment of the potential source - pathway - receptor linkages (complete pathways).

7.1 Known and Potential Contamination Sources and Contaminants of Concern

Based on the findings of DP (2019a) & (2019d), the current PSI (DP, 2020a) potential sources of contamination and associated contaminants of concern have been identified in Table 2. Table 3 outlines in general the location, depth and type of contaminants identified during previous investigations within the current site; refer to Sections 11 & 12 for a summary of these results in relation to the adopted SAC and their significance.

Location	Depth Range(s)	Contaminants
BH210	0.2-0.3	B(a)P
BH3	0.10.2	Nickel

Table 2: Previously Identified Contamination

Potential Source	Description of Potential Contaminating Activity	Contaminants of Concern
Imported fill of unknown origin (S1)	Filling: Associated with disturbed terrain in the local area and from building of roads and demolition of structures. Previous investigations have identified an average fill thickness of about 0.5 m across the RCR development.	Heavy metals, TPH, BTEX, PAH, phenols, PCB, OCP, and asbestos. Previous investigations have identified the presence of the above contaminants to varying degrees, with the exception of most metals, BTEX, OCP and phenols. Exceedances of the SAC are shown on Table 2. Further contaminants were identified in test locations within the larger RCR area.
Previous site structures (S2)	Part of the site was previously occupied by residential / commercial structures, some structures within the larger RCR area were confirmed to have hazardous building materials including asbestos and lead based paint. The former Eurimbla Avenue, which passes through the site boundary, contained asphalt and roadbase.	Lead, asbestos, PCB, PAH, TRH, BTEX. Previous investigations have identified the presence of the above contaminants to varying degrees, with the exception of most metals, BTEX, OCP and phenols. Exceedances of SAC are shown on Table 2.
Construction activities (S3)	Part of the site has largely been used for the storage of materials and equipment associated with construction activities in the neighbouring ASB and IASB areas. There is a low potential for impacts from stockpiling and equipment maintenance.	Heavy metals, TRH, BTEX, PAH, asbestos.
Industrial / commercial activities, neighbouring and nearby (S4)	Operation of hospital. Storage of chemicals or equipment associated with former butcher / medical practices and orthodontist. Explosives associated with possible former air raid shelter shown on 1941 aerial photograph. EPA notified dry cleaning business to the north-east.	Heavy metals, TRH, BTEX, PAH, phenols, VOC, ammonia and asbestos.

Table 3: Potential Additional Contamination Sources and Contaminants of Concern

The potential contamination sources (S) on the site, in addition to the known locations of contamination (Table 2) are therefore as follows:

- S1: Fill of unknown origin;
- S2: Previous site structures;
- S3: Construction activities; and
- S4: Industrial / commercial activities, neighbouring and nearby.

7.2 Potential Receptors

7.2.1 Human Health Receptors

- R1 Current site users (site workers (deliveries), pedestrians, road users);
- R2 Construction and maintenance workers;
- R3 Final end users (health workers and visitors); and
- R4 Land users in adjacent areas (university / hospital / residential / commercial).

7.2.2 Environmental Receptors

- R5 Groundwater;
- R6 Surface water (Botany Bay); and
- R7 Terrestrial ecosystems (neighbouring areas of conservations such as Centennial Park, Queens Park and Eastlakes).

7.2.3 Potential Pathways

Potential pathways for the identified contamination to impact on the receptors include the following:

- P1 Ingestion and dermal contact;
- P2 Inhalation of dust and/or vapour;
- P3 Leaching of contaminants and vertical migration into groundwater (Eastlakes / Botany Bay);
- P4 Surface water run-off (Centennial Park / Coogee);
- P5 Lateral migration of groundwater; and
- P6 Contact with terrestrial ecology (Centennial Park).

7.3 Summary of Preliminary CSM

A 'source - pathway - receptor' approach has been used to assess the potential risks of harm being caused to human, water or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways. The possible pathways between the above potential sources (S1 to S4) and receptors (R1 to R7) are provided in Table 4 below.

Source	Pathway	Receptor
S1 Fill of unknown origin	P1: Ingestion and dermal contact	R1: Current site users R2: Construction and maintenance workers R3: Final end users
S2 Previous structures on-site S3 Construction Activities	P2: Inhalation of dust and/or vapour	R1: Current site users R2: Construction and maintenance workers R3: Final end users (educational / hospital) R4: Land users in adjacent areas (educational / hospital / residential / commercial / industrial)
	P3: Leaching of contaminants and vertical migration into groundwater	R5: Groundwater
	P4: Surface water run-off P5: Lateral migration of groundwater	R6: Surface water
	P6: Contact with terrestrial ecology	R7: Terrestrial ecology
S4 Neighbouring sites	P2: Inhalation of vapour generated by contaminated groundwater.	 R1: Current site users R2: Construction and maintenance workers R3: Final end users R4: Land users in adjacent areas
	P3: Lateral migration of contaminated groundwater from up- gradient sites	R5: Groundwater R6: Surface water
	P6: Contact with terrestrial ecology	R7: Terrestrial ecology

Table 4: Potential Complete Pathways

8. Field Work

8.1 Sample Location and Rationale

The current site comprises an area of approximately 1910 m², which corresponds to a recommended sampling density (NSW EPA, 1995) of approximately 7 regularly placed sampling locations. Previous investigations prior to DP (2020) reports have included 6 test locations within 10 m of the current site boundary, noting that four locations are outside the boundary, but are considered indicative of nearby conditions in the absence of a surveyed site boundary. These locations are shown on Drawing 4, Appendix A.

As noted in Table 3, previous intrusive investigation locations have largely targeted the potential contamination sources S1 and S2. Accordingly, the current investigation has focused on existing data gaps, namely test locations within Hospital Road (S1 to S4) and opportunistic sampling within the Stage 2 area (as part of a geotechnical investigation) to assess potential impacts ongoing construction works may have had on the site conditions (S3), and therefore, the validity of previous results.

Field investigations were undertaken between 19 to 31 August (boreholes) and 2 to 7 September 2020 (Cherrie Civil test pits) undertaken under the supervision of DP environmental and geotechnical engineers. The main objectives of the field investigations were to gather geotechnical information to inform the design and process of the proposed Hospital Road lowering, to assess the position of underground utilities, and for waste classification purposes to inform off-site disposal options for surplus soils.

The field work for the boreholes comprised the drilling of eight boreholes (BH601 to BH608) drilled to a minimum depth of 0.5 m into natural soils or prior refusal using a combination of NDD, hand tools and a track mounted drilling rig. Groundwater monitoring wells were installed at BH602, 605, 606 and 608 to target groundwater in the natural sands above the sandstone bedrock, and within the bedrock itself. Boreholes 601, 603, 605, 606, 607 and 608 were extended deeper into the sandstone bedrock for geotechnical purposes. It is noted that boreholes BH606-608 are not located within and are not proximate to the current site.

The fieldwork for the test pits within Hospital Road and its verges was conducted by undertaking opportunistic sampling from previously excavated NDD pits (TP601 to TP604) conducted by Cherrie Civil (undertaken for civil construction and utilities location purposes). Where the pits did not extend into natural soils the pit was drilled further using a hand operated auger, extending into natural soils or refusal (i.e., due to services or exposed bedrock).

Groundwater sampling was undertaken from wells installed in BH608 and previously installed well in BH12 (refer Drawing 4, Appendix A). These wells were selected for sampling as they were positioned hydraulically upgradient (BH608) and downgradient (BH12) within or just outside the site. Other wells which may have been suitable were found to be dry at the time of sampling.

8.2 Sampling Procedure

8.2.1 Soil

Environmental sampling was performed with reference to current industry standards. All sampling data was recorded on DP chain-of-custody (CoC) sheets. The general sampling and sample management procedures comprised:

- Collection of samples into laboratory-prepared glass jars with Teflon-lined lids, capping immediately to minimise headspace within the sample jar. Preliminary screening for asbestos was achieved by sub-sampling of the submitted jars by the laboratory;
- Field screening of recovered samples using a Photo-Ionisation Detector (PID) for Volatile Organic Compounds (VOC);
- New disposable nitrile gloves were worn by the field engineer for each sample collected thereby reducing the potential for cross-contamination;

- Decontamination of sampling equipment in-between sampling locations with a three-stage wash procedure, using a 5% solution of a phosphate free detergent (Decon 90) and deionised water; Collection of 10% replicate samples for quality control (QC) purposes;
- Labelling of sample containers with individual and unique identification details, including project number, sample location and sample depth (where applicable); and
- Placement of the sample jars into a cooled, insulated and sealed container for transport to the laboratory.

8.2.2 Groundwater

The groundwater sampling and handling procedures comprised:

- Following installation, the monitoring wells were developed by pumping until dry or a minimum of three well volumes in order to remove as far as practicable any fluids introduced during drilling and to facilitate connection to the local groundwater aquifer;
- Measurement of common groundwater parameters (temperature, pH, electrical conductivity, dissolved oxygen, redox potential and turbidity) before and after micro-purging with a low-flow peristaltic pump to ensure groundwater parameters were stabilised prior to sampling;
- Sampling using a low-flow peristaltic pump using disposable LDPE tubing. Samples were decanted directly into containers with preservatives for specific analytes, samples recovered for metals were filtered directly in the field using an in-line 0.45 µm disposable filter;
- Decontamination of non-disposable sampling equipment in-between sampling locations with a three-stage wash procedure, using a 5% solution of a phosphate free detergent (Decon 90) and deionised water; Collection of 10% replicate samples for quality control (QC) purposes;
- Labelling of sample containers with individual and unique identification details, including project number and sample location; and
- Placement of the sample containers into a cooled, insulated and sealed container for transport to the laboratory.

8.3 Analytical Rationale

The analytical scheme for soil and groundwater samples was designed to obtain an indication of the potential presence and possible distribution of identified CoPC identified by the CSM, namely metals / metalloids, TRH, BTEX, PAH, OCP, OPP, PCB, phenols, VOC, explosives / ammonia (soils) and asbestos (soils). The results of the analytical testing were compared with the adopted site assessment criteria (SAC) discussed in Section 9.

8.4 Quality Assurance and Quality Control (QA / QC)

This DSI has been devised in general accordance with the seven-step Data Quality Objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC (2013). The DQO process is outlined as follows:

- State the problem;
- Identify the decision;
- Identify inputs into the decision;
- Define the boundary of the assessment;
- Develop a decision rule;
- Specify acceptable limits on decision errors; and
- Optimise the design for obtaining data.

The DQOs adopted for this investigation are provided in Appendix D.

8.5 Data Quality Indicators

The performance of the assessment in achieving the DQO was assessed through the application of Data Quality Indicators (DQI) as defined by:

Precision:	A quantitative measure of the variability (reproducibility) of data;	
Accuracy:	A quantitative measure of the closeness of reported data to the "true" value;	
Representativeness:	The confidence (expressed qualitatively) that data are representative of each media present on the site;	
Completeness:	A measure of the useable data from a data collection activity; and	
Comparability:	The confidence (expressed qualitatively) that data can be considered equivalent for each sampling and analytical event.	

Further comments on the DQIs are presented in Appendix D.

9. Site Assessment Criteria

The Site Assessment Criteria (SAC) for the identified CoPC are based on the health investigation levels (HIL), health screening levels (HSL), ecological investigation levels (EIL) and ecological screening levels (ESL) in accordance with Schedule B1 of NEPC (2013). Petroleum based health screening levels for direct contact have been adopted from the CRC CARE Technical Report no.10 (CRC CARE, 2011) as referenced by NEPC (2013).

A hospital generally has numerous potential soil exposure scenarios, and therefore does not fit solely within one generic land use scenario as listed in NEPC (2013). Given the potential proposed development and based on the CSM the adopted land use scenarios are as follows:

- **Residential B** Residential end use scenario with minimal access to underlying soils which is considered generally representative of the proposed hospital usage for patients; and
- **Commercial and Industrial D** Commercial and industrial end use for roads and parts of the proposed Hospital road lowering (continuation of present use). This is also considered to screen for hospital workers and as a conservative screen for intrusive maintenance workers (also representing construction workers).

Given the mixed land-use the Residential B criteria will be applied as a more conservative screen unless it can be demonstrated that the Commercial / Industrial D scenario is more applicable to separate parts of the proposed development (e.g., within Hospital Road).

Appendix F outlines in more detail the relevant investigation and screening levels adopted for soils. All site specific and / or theoretical assumptions relevant to the selection of the investigation and screening levels have been outlined in each sub-section as required.

10. Fieldwork Results (2020 Sampling)

The subsurface conditions at each test location are provided in the logs attached in Appendix E, along with descriptive notes, field records and calibration records for the groundwater sampling. The conditions encountered in the current investigation are summarised as:

- **PAVEMENT / SLAB:** A 30 100 mm thick asphaltic concrete surfacing (within Hospital Road).
- **FILL / ROADBASE:** Fine to medium, grey and brown medium grained sandy gravel, fine to medium igneous gravel and medium grained sandstone gravel to depths of 0.3 m.
- **FILL / Gravelly SAND:** Medium, brown, fine sandstone and igneous gravel, from depths of 0.3-0.8 m, underlying the roadbase layer. Within the Stage 2 area a layer was observed with crushed sandstone material.
- **FILL / Silty SAND:** Fine to medium, brown with rootlets, trace clay. Encountered within test pits within garden beds on the verges of Hospital Road to depths of 0.4 m.
- **FILL / SAND:** Fine to medium, brown, with silt and with variable amounts of igneous and sandstone gravel. Trace quantities of anthropogenic materials including glass, brick, tile charcoal at select locations.
- Clayey SAND / Sandy CLAY: Fine to medium, orange-brown, low plasticity fines in the northern boreholes (BH604 and 605). From depths starting at 1.5 m extending until sandstone bedrock. This layer is considered to be associated with the Newport soil landscape group.
- **SAND:** Fine to medium, grey and yellow-brown, trace silt, located in the more southern boreholes. From depths of 0.4 m extending until the sandstone bedrock. A layer of indurated and weakly cemented sand ('coffee rock') was noted at BH602, increased clay content was noted at BH607 and 608. These layers are considered to be associated with Tuggerah soil landscape group.

• **SANDSTONE:** Hawkesbury sandstone bedrock was encountered from 2.5 m in the north of Stage 2 (BH608) and 4.02 m in the south of Hospital Road (BH602). The sandstone was generally medium to coarse grained, pale grey and yellow, very low to high strength (increasing with depth) and with slight degrees of fracturing and weathering. Thin layers of residual sandy clay (extremely weathered sandstone) were noted above the very low to low strength sandstone at select locations.

Groundwater levels were measured at 49.6 m AHD (3.28 m bgl, BH 608), 48.6 m AHD (3.36 m bgl, BH13) and 49.8 m AHD (5.88 m bgl, BH12) respectively. Measured groundwater parameters indicated slightly acidic, saline and aerobic conditions and an oxidising environment. It is noted that groundwater levels are transient and will change with time and climatic conditions.

11. Laboratory Results

A summary of the laboratory results is presented in Tables C1 and C2, Appendix C, for soil and groundwater respectively. The tables include the relevant previous investigation data, and the current data. Those results that fall within the remediated Stage 1 site (ASB) are shown on italics on Table C1. Laboratory certificates of analysis, chain of custodies and sample receipts for the current (2020) sampling are provided in Appendix G. Laboratory certificates for the previous investigations can be found in the DP (2018) and DP (2019a) reports.

11.1 Soil

All results were found to be within the adopted SAC with the exception of the detection of asbestos at one location, minor exceedances of PAH and ecological exceedances for select metals. The exceedances as per a Residential-B land-use scenario are summarised below in Table 5 in conjunction with previous exceedances within the current site, as reported in DP (2018), (2019a), (2019d) & (2019e), further discussion is provided in Section 13 for applicability of parts of the site for different land-use scenarios. The table excludes any exceedances that were previously remediated under the Stage 1 (ASB) validation process.

	•				
EIL / ESL B Exceedances	HIL / HSL B Exceedances				
Current Investigation					
Copper - 67 (EIL 65)	-				
B(a)P - 0.96 (ESL 0.7)	Asbestos detected *				
Nickel - 19 (EIL 9)	-				
Nickel - 22 (EIL 9)	-				
Nickel - 27 (EIL 9)	-				
Nickel - 27 (EIL 9)					
Zinc - 410 (EIL 240)	-				
Zinc - 240 (EIL 240)	B(a)P TEQ - 4.6 (HIL 4)				
B(a)P - 3.3 (ESL 0.7)					
Nickel - 35 (EIL 9)	-				
BD1/20200819 ^a Nickel - 34 (EIL 9)					
DSI (DP, 2019a)					
B(a)P - 1.5 ESL 0.7)	-				
	ElL / ESL B Exceedances Current Investigation Copper - 67 (EIL 65) B(a)P - 0.96 (ESL 0.7) Nickel - 19 (EIL 9) Nickel - 22 (EIL 9) Nickel - 22 (EIL 9) Nickel - 27 (EIL 9) Nickel - 27 (EIL 9) Zinc - 410 (EIL 240) Zinc - 240 (EIL 240) B(a)P - 3.3 (ESL 0.7) Nickel - 34 (EIL 9) DSI (DP, 2019a) B(a)P - 1.5 ESL 0.7)				

Table 5: Summary SAC Exceedances mg/kg (Current and Previous Results)

Notes:

Results in italics are below the higher reliability CRC CARE guidelines for B(a)P (CRC CARE, 2017), see further discussion in Section 13.

* Asbestos detected below the laboratory limit of reporting (0.1 g/kg)

** Suspected asbestos detected during field screening (DP, 2019a)

Statistical analysis for B(a)P TEQ is attached in Table C4, Appendix C.

11.2 Groundwater

All groundwater results from the current investigation were within the adopted GIL with the exception of minor exceedances of copper, zinc and B(a)P:

- Copper BH608 0.009 mg/L (GIL 0.0014 mg/L);
- Zinc BH608 0.017 mg/L (GIL 0.008 mg/L); and
- B(a)P BD1/20200908 (BH608) 0.0003 mg/L & BH608 0.0002 (GIL 0.0001 mg/L).

12. Preliminary Waste Classification

A six-step procedure for determining the type of waste and the waste classification is provided in the NSW EPA *Waste Classification Guidelines* (NSW EPA 2014). Part of the procedure, for materials not classified as special waste or pre-classified waste, is a comparison of analytical data initially against Contaminant Threshold (CT) values specific to a waste category. Alternatively, the data can be assessed against Specific Contaminant Concentration (SCC) thresholds when used in conjunction with Toxicity Characteristic Leaching Procedure (TCLP) thresholds.

The CT, SCC, and TCLP values relevant to this waste classification are shown in Table C3 (Appendix C).

The following Table presents the results of the six-step procedure outlined in NSW EPA (2014) for determining the type of waste and the waste classification. This process applies to the fill at the site.

	Step	Comments	Rationale
1.	Is it special waste?	Yes (refer to further discussion below)	Asbestos-Containing Materials (ACM) were observed and detected by the analytical laboratory at one test location (TP602) during the current investigation. Further asbestos was identified during previous investigations nearby the current site boundary within the RCR area. No coal tar, clinical or related waste, or waste tyres were observed in the boreholes.
2.	Is it liquid waste?	No	Materials composed of a soil matrix.
3.	Is the waste "pre-classified"?	No	Fill did not fall into one of the pre-classified categories.
4.	Does the Waste have hazardous waste characteristics	No	Waste not observed to / or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances or corrosive substances, substances liable to spontaneous combustion.
5.	Chemical Assessment	Conducted	Refer to Table C3 in Appendix C.
6.	Is the Waste Putrescible?	No	All observed components of filling composed of materials pre-classified as non-putrescible ^a (i.e., soil).

Table 6: Six-Step Classification

Note: a wastes that are generally not classified as putrescible include soils, timber, garden trimmings, agricultural, forest and crop materials, and natural fibrous organic and vegetative materials (EPA, 2014).

As shown in Table C3 (Appendix C) all contaminant concentrations for the analysed samples from the current investigation were within the contaminant thresholds (CT1s) for General Solid Waste (GSW) with the exception of:

- Lead BH604/1.0-1.2 (150 mg/kg); and
- B(a)P TP602/0.7-0.9 (0.96 mg/kg), BH604.1.0-1.2 (3.3 mg/kg) and BH606/0.5 (3.4 mg/kg).

Further toxicity characteristic leaching procedure (TCLP) testing on these samples for both lead and B(a)P resulted in combined SCCC and TCLP results within both SCC1 and TCLP1 respectively.

Previous investigations noted exceedances of lead and B(a)P (as noted on Table C3, Appendix C) within the current site. However, TLCP testing on selected worst-case concentrations also resulted in combined SCCC and TCLP results within both SCC1 and TCLP1 respectively.

Asbestos was noted at one test location (TP602) located in the garden beds to the east of Hospital Road. Further asbestos was previous identified within the RCR Stage 1 and 2 areas during the DSI (DP, 2019a), particularly during field screening in the footprints of the former residential buildings.

On this basis the fill soils across the site are given a preliminary classification of **General Solid Waste** (non-putrescible) - Special Waste (asbestos). Subject to further *ex-situ* testing to confirm or otherwise the presence of asbestos and potentially elevated levels of lead and B(a)P in fill, it is possible that some of the fill may be re-classified as General Solid Waste (non putrescible).

It is noted that the current investigation did not target sampling of roadbase materials beneath Hospital Road. As such these materials should be managed separately and subject to further analysis.

13. Discussion

13.1 Soils

The results of the current investigation indicate similar results to previous investigations, with exceedances of health-based criteria in soils for B(a)P TEQ and asbestos detected at one location.

Statistical analysis of B(a)P TEQ results for all test locations (current and previous) within fill using ProUCL Statistical software (refer Appendix C) resulted in a calculated 95% Upper Confidence Limit (UCL) of 1.7 mg/kg which is within HIL-B of 4 mg/kg.

It is also noted that the exceedance of B(a)P TEQ at BH604 (4.6 mg/kg) is located within Hospital Road and where a commercial / industrial D land-use scenario may be more applicable, and therefore is within HIL D (40 mg/kg). Furthermore, with the planned lowering of Hospital Road, this location will be removed from site.

Exceedances of environmental-based criteria were noted for metals (copper, nickel and zinc) and B(a)P. The elevated levels of B(a)P are not considered to be significant when compared against the higher reliability CRC CARE (2017) guidelines which provides 95% confidence intervals of 96 mg/kg (33 mg/kg mean value) for urban, residential and public open space land-use. The elevated levels of metals were also previously not considered to be significant given the minor elevated levels, and that they could be

appropriately managed by using suitability appropriate landscaping materials which meet both the SAC and horticultural requirements. The relative impact of these exceedances is also considered minor given the majority of the site will comprise a new roadway, with pathways and limited landscaping on the verges and for the parts of the site within Stage 2 of the RCR area.

Further exceedances of metals, TRH and PAH are also considered to be possible within roadbase materials beneath Hospital Road. As previously mentioned, these may potentially be managed preferentially through re-use under the Recovered Aggregate Order (NSW EPA, 2014).

No measurable levels of VOC or explosives were noted. Minor detection of ammonia was noted just above the laboratory practical quantification limit but is not considered to be significant.

13.2 Asbestos

The detection of asbestos at one location (TP602) indicates the potential for further asbestos to be present within fill materials along the eastern verge of Hospital Road in the nearby garden beds. Further testing as per WA DoH guidelines (WA DoH, 2009) would be necessary to quantify the potential risks and to assess the suitability of these soils to remain or be-reused for the proposed development.

Whilst it is understood that the majority of the identified asbestos contamination within the RCR development area was removed and validated during remedial works (DP, 2019c), this did not encompass the entirety of Stage 2, with only the stormwater easement cleared of asbestos contamination. It is therefore considered to be possible that residual or unidentified asbestos contamination may be present and / or have been disturbed during ongoing construction works and construction related activities within the site.

13.3 Groundwater

The results of the groundwater monitoring indicate similar groundwater conditions with minor elevated levels of metals, which were previously considered to be indicative of regional, urban groundwater conditions. Minor detection of B(a)P in groundwater above the GIL are not considered to be significant given the proposed site usage (lack of direct access to groundwater), however, the detection is considered possible to be indicative of the diffusive B(a)P contamination present within fill across the larger RCR development.

13.4 Waste

The results of the preliminary waste classification indicate a preliminary classification **General Solid Waste (non-putrescible) - Special Waste (asbestos)**.

It is also noted that waste classification works conducted during the Stage 1 RCR remediation works (DP, 2019c), noted further exceedances for both lead and B(a)P, however, TCLP testing also resulted in combined SCC and TCLP results within both SCC1 and TCLP1 respectively for multiple separate stockpiles of fill. As such it is considered likely that there may be further minor exceedances of lead and B(a)P when testing excavated soils, however, it is considered probable that further TCLP testing will

produce similar results. As noted earlier, further impacts of asbestos may be present within the garden beds along Hospital Road and within the RCR development area. Further *ex-situ* assessment of stockpiled soils is recommended prior to transport and off-site disposal.

It is recommended that roadbase materials beneath Hospital Road are stockpiled and managed separately to other excavated soils given the potential for elevated concentrations of TRH, PAH and metals to be present. Previous results for soils beneath Eurimbla Avenue have indicated a classification of Restricted Solid Waste (non-putrescible) in parts. Further *ex-situ* analysis will inform any adopted waste management strategy which may include beneficial re-use under a Resource Recovery Order in instead of off-site disposal as waste.

14. Updated Conceptual Site Model

Based on the results summarised within this report and the preliminary CSM, an updated CSM containing complete source-pathway-receptor linkages as confirmed by the testing is summarised in Table 7 below. Whilst source S4 (offsite activities, as per the preliminary CSM) is still considered to exist the measurable impacts are considered to be negligible and more representative of general urban conditions (e.g., elevated metal concentrations in groundwater) rather than posing a risk for the proposed development. No measurable impacts were detected from the notified dry-cleaning business (VOC), the nearby hospital or potential impacts from the former air-raid shelters (ammonia, explosives).

Source	Pathway	Receptor
S1 Fill of unknown	P1: Ingestion and dermal contact	R1: Current site users
origin		R2: Construction and maintenance workers
		R3: Final end users
S2 Previous	P2: Inhalation of dust and/or vapour	R1: Current site users
structures		R2: Construction and maintenance workers
		R3: Final end users (educational / hospital)
S3 Construction Activities		R4: Land users in adjacent areas
		(educational / hospital /
		residential / commercial / industrial)
	P3: Leaching of contaminants and vertical migration into groundwater	R5: Groundwater (low potential)
	P4: Surface water run-off	R6: Surface water
	P5: Lateral migration of groundwater	
	P6: Contact with terrestrial ecology	R7: Terrestrial ecology

Table 7: Updated CSM (Likely Source-Pathway-Receptor Linkages)

15. Conclusion and Recommendations

Based upon the results presented within this report it is considered that there is a low to medium risk of contamination at the site, primarily related to existing fill and the (potential) presence of asbestos and PAH. It is therefore recommended to develop a Remediation Action Plan (RAP) to address contamination at the site. The RAP will provide strategies for:

- Assessing the data available to determine areas of environmental concern (AEC) requiring remediation;
- Remediation of the AEC;
- Management of waste including asbestos impacts in soil and roadbase materials;
- Management of excavations and tracking of soil movement within the site and off site;
- Management of imported materials;
- Asbestos and unexpected finds management; and
- Further testing (including validation of identified contamination) as required.

It is considered that following the successful implementation of a RAP the site will be rendered suitable for the proposed development.

16. References

CRC CARE. (2011). *Health screening levels for petroleum hydrocarbons in soil and groundwater.* Parts 1 to 3, Technical Report No. 10: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

CRC CARE. (2017). *Risk-based Management and Remediation Guidance for Benzo(a)pyrene*. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

DP. (2018). Report on Preliminary Site Investigation for Contamination. Randwick Campus Redevelopment, Hospital Road and High, Magill and Botany Streets Randwick.

DP. (2019a). Report on Detailed Site Investigation. Randwick Campus Redevelopment. Bound by High, Magill Hospital and Botany Streets, Randwick. Ref: 72505.14.R.001.Rev1.

DP. (2019b). Remediation Action Plan. Randwick Campus Development, Stage 1 and IASB Additional. Botany and Magill Streets, and Hospital Road, Randwick. Ref 72505.14.R.002.Rev9.

DP. (2019c). Report on Stage 1 Validation. Randwick Campus Redevelopment, Botany Street, Randwick. Ref 72505.15.R.039.Rev0.

DP. (2019d). Report on Detailed Site Investigation. IASB Addition - Randwick Campus Redevelopment, Hospital Road, Randwick. Ref 72505.16.R.001.Rev0.

DP. (2019e). Stage 2 In-Situ Waste Classification Assessment, Prince of Wales Hospital Redevelopment, Randwick Bounded by High Street and Hospital Road, Randwick.

DP. (2020a). Report on Preliminary Site Investigation for Contamination. Hospital Road REF, Randwick CAmpus Redevelopment, High Street and Hospital Road, Randwick.

DP. (2020a). Report on Preliminary Site Investigation for Contamination. SCH / CCCC, Randwick Campus Redevelopment Hight Street and Hospital Road, Randwick.

DP. (2020a). Report on Preliminary Site Investigation for Contamination. SCH / CCCC, Randwick Campus Redevelopment, High Street and Hospital Road, Randwick. Ref 72505.19.R.001.Rev1 dated December 2020.

DP. (2020b). Assessment of Central "Tear Drop" Area. Randwick Campus Redevelopment Project, Prince of Wales Hospital, Randwick.

DP. (2020b). Report on Detailed Site Investigation for Contamination, SCH / CCCC Randwick Campus Redevelopment, Hospital Road, Randwick. Ref 72505.19.R.002.Rev0.

DP. (2020c). Report on Remediation Action Plan, SCH / CCCC Randwick Campus Redevelopment, High Street and Hospital Road, Randwick. Ref 72505.19.R.003.Rev1 dated December 2020.

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA. (2004). Chemical Control Order in Relation to Scheduled Chemical Wastes.

NSW EPA. (2014). Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014, The recovered aggregate order 2014. NSW Environment Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* NSW Environment Protection Authority.

NSW EPA. (2016). Addendum to the Waste Classification Guidelines (2014) - Part 1: Classifying Waste. NSW Environment Protection Authority.

WA DoH. (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. WA Department of Health.

17. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this proposed project at Hospital Road, Randwick in accordance with DP's proposal (.SYD200742.P.002.Rev0 dated 23 November 2020) and acceptance received from Miljan Tepic of Pricewaterhouse Coopers on behalf of Health Infrastructure The work was carried out as a variation under a professional services agreement with Health Infrastructure (HI17299). This report is provided for the exclusive use of Health Infrastructure for this project only and for the purposes as described in the report. It should not be used for other projects or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and / or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Asbestos has detected by laboratory analysis in filling materials at the test locations sampled and analysed. Building demolition materials, such as concrete, brick, tile etc. were, however, located in previous below-ground filling and/or above-ground stockpiles and these are considered as indicative of the possible presence of further hazardous building materials (HBM), including asbestos. Asbestos was also noted in below-ground filling during previous investigations.

Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions and parts of the site being inaccessible and not available for inspection/sampling. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

Douglas Partners Pty Ltd

Appendix A

Notes About this Report

Drawings

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

<u>d</u> D	Doug		as Pa		rtners
	Geotechnics	I	Environment	I	Groundwater

	CLIENT: LendLease Building	g Pty Ltd	TITLE:	Site Locality
5	OFFICE: Sydney	DRAWN BY: JJH		SCH1 / CCCC - Randwick Campus Redevelopment
•	SCALE: 1:1500 @A3	DATE: 18.01.2021		Hospital Road and High, Magill and Botany Streets, Randwick

LOCALITY MAP

Notes: 1. Basemap from nearmap.com (dated 02/08/2020)

() ()	Douglas Partners
	Geotechnics Environment Groundwater

CLIENT:	Health Infrastructure	9		TITLE:	Proposed HTH and SCH / CCCC Development
OFFICE:	Sydney	DRAWN BY:	JJH		Hospital Road REF - Randwick Campus Redev
SCALE:	1:1500 @A3	DATE:	15.12.2020		Hospital Road and High, Magill and Botany Str

Douglas Partners	CLIENT: Health Infrastructure			Previous Test Locations
	OFFICE: Sydney	DRAWN BY: JJH		Hospital Road REF - Randwick Campus Redevelopment
Geotechnics Environment Groundwater	SCALE: 1:1250 @ A3	DATE: 15.12.2020		Hospital Road, High and Magill Streets, Randwick NSW

BLENHEIM ST Plaza SER MBI lospita EUR he Prince of Wale ST Hospital Prince Of Wales RTON MAGILL Private Hospital ST ST/ STE HAY ST ST Sī

Notes:

1. Basemap from nearmap.com (dated 08/02/2020)

Legend

Hospital Road REF (the site) \bullet DP Environmental borehole (PSI, DP 2018) DP borehole location (PSI,DP 2018) € Ð DP borehole location (DSI, DP 2019a) DP test pit location (DSI, DP 2019a) Post Demolition Test Pit (DSI, DP 2019) -÷ IASB Sample Locations (IASB DSI, 2019d) Existing Groundwater Wells Stage 2 Waste Classification Test Pits (DP 2019e) 0 25 50 75 m PROJECT No: 72505.22 DRAWING No: 3 **REVISION:** 0

	С
Douglas Partners	0
Geotechnics Environment Groundwater	S

CLIENT:	Health Infrastructur	re	TITLE:	Current and Previous Test Locations
OFFICE:	Sydney	DRAWN BY: JJH		Hospital Road REF - Randwick Campus Redevelopment
SCALE:	1:750 @ A3	DATE: 15.12.2020		Hospital Road, High and Magill Streets, Randwick NSW

WAN 47 o 32 Tenpin St BLENHEIM ST Plaza GILL Royal Hespital for STR Womenla 2 RTON ST ST O

Notes:

1. Basemap from nearmap.com (dated 08/02/2020)

Legend

	Hospital Road REF (the site)								
\	Current SCH / CCCC Boreholes (2020)								
	Current S	сн / сс	CC Test	Pits					
�	DP Enviro	onmenta	l borehole	e (PSI, DF	P 2018)				
\$	DP boreh	ole locat	ion (PSI,[OP 2018)					
\	DP boreh	ole locat	ion (DSI,	DP 2019	a)				
	DP test pi	t locatio	n (DSI, D	P 2019a)					
•	Post Dem	olition Te	est Pit (D	SI, DP 20)19)				
	IASB San	nple Loc	ations (IA	SB DSI, :	2019d)				
\	Existing G	Groundw	ater Wells	3					
	Stage 2 V	/aste Cl	assificatio	on Test Pi	ts (DP 201				
0	10	20	30	40	50 m				
		$\overline{\mathbb{A}}$	PROJEC	T No:	72505.22				
	(/א∖ _	DRAWIN	IG No:	4				
			REVISIC	N:	0				

Douglas Partners	
Geotechnics Environment Groundwater	

CLIENT: Health Infrastructur	Health Infrastructure					
OFFICE: Sydney	DRAWN BY: JJH		Hospital			
SCALE: 1:750 @A3	DATE: 15.12.2020		Hospital			

s Asbestos Finds Road REF - Randwick Campus Redevelopment Road and High, Magill and Botany Streets, Randwick, NSW

BLENHEIM ST laza EURIM Prince of Wale ST Hospital Prince Of Wales RTON MAGILL ST ST Private Hospita 5 Royal ST ST

LOCALITY MAP

Notes: 1. Basemap from nearmap.com (dated 02/08/2020)

Legend

Appendix B

Site Photographs

Photo 1: Northern end of hospital road

Photo 2: Southern part of Hospital Road within IASB area

Douglas Partners	Site Ph	otographs	PROJECT:	72505.22
	Hospita Campu	al Road REF, Randwick s Redevelopment	PLATE No:	1
Geotechnics Environment Groundwater	High St Randwi	reet and Hospital Road, ick	REV:	0
	CLIENT	Health Infrastructure	DATE	12/10/2020

Photo 3: Site Conditions within the RCR Construction Site

Photo 4: Nearby Existing SCH and Prince of Walse Hospital

	Site Ph	otographs	PROJECT:	72505.22
Douglas Partners	Hospita Campu	al Road REF, Randwick s Redevelopment	PLATE No:	2
Geotechnics Environment Groundwater	High St Randwi	reet and Hospital Road, ick	REV:	0
	CLIENT	Health Infrastructure	DATE	12/10/2020

Photo 5: Typical test pit profile within Hospital Road verges at TP604

Photo 6: Test pit profile within garden beds to east of Hospital Road

	Site Ph	otographs	PROJECT:	72505.22
Douglas Partners	Hospita Campu	al Road REF, Randwick s Redevelopment	PLATE No:	3
Geotechnics Environment Groundwater	High St Randwi	reet and Hospital Road, ick	REV:	0
	CLIENT	Health Infrastructure	DATE	12/10/2020

Appendix C

Summary Results

Table C1 - Summary of Soil Laboratory Analysis (All results in mg/kg unless otherwise stated)

							Metals						PA	чн		Phenols				TRH				BT	TEX					Organocl	Iorine Pes	ticides (OCP)			OPP	PCB	Asb	estos	VOC		Τ
Sample ID	Depth	Sampling Date	Soil Type*	Arsenic	Cadmium	Chromium (VI) ^b	Copper	Lead	Mercury	Nickel	Zinc	Naphthalene	Benzo(a) Pyrene (BaP)	BaP TEQ	Total PAH	Total Phenois	TRH C ₆ -C ₁₀	TRH >C ₁₀ -C ₁₆	C ₁₆ - C ₃₄ (F3)	C34 - C40 (F4)	C6 - C10 less BTEX (F1)	C ₁₆ . C ₁₆ less Napthalene (F2)	Benzene	Toluene	Ethylbenzene	Total xylenes	DDT + DDD + DDE	Aldrin and Dieldrin	Chlordane	Endosulfan	Endrin	Heptachlor	НСВ	Methoxychlor	Chlorpyrifos	Total PCB	Asbestos ID	AF /FA	Total Positive VOC	Ammonia	Explosives (Nitroamides, Nitrobenzenes, Nitrates)
		Practical Quantitation	on Limit (PQL)	4	0.4	1	1	1	0.1	1	1	0.1	0.05	0.5	0.05	5 ^d	25	50	100	100	25	50	0.2	0.5	1	3	0.3	0.2	0.2	0.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1g/kg	0.001 % w/w	1	0.5	с
															Site A	ssessment Crit	ria (SAC)																								
	HIL B & HS	L B (direct contac	:)	500	150	500	30000	1200	120	1200 6	0000	2200	•	4	400	130	5600	4200	5800	8100	-	-	140	21000	5900	17000	600	10	90	400	20	10	15	500	340	1	-		-	-	-
	HIL D & HS	L D (direct contac	.)	3000	900	3600	240,000	1500	730	6000 40	00000	11000	-	40	4000	660	26000	20000	27000	28000	-	-	430	99000	27000	81000	3600	45	530	2000	100	50	80	2500	2000	7	-			<u> </u>	
	HSL A&B - Vap	our intrusion (Sal	n	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-	45	110	0.5	160	55	40	-	-	-	-	-	•	-	-	-	-	NAD		<pql< td=""><td><u> </u></td><td><pql< td=""></pql<></td></pql<>	<u> </u>	<pql< td=""></pql<>
	FIL (Boc/Or	on Space coarse) 	-	-	-	-	-	-	-	-	NL	-	-	-	-	-	-	-	-	260	NL	3	NL	NL	NL	-	-	-	-	-	-	-	-	-	-	NAD		<pql< td=""><td><u> </u></td><td><pql< td=""></pql<></td></pql<>	<u> </u>	<pql< td=""></pql<>
	EIL (Commerc	ial/Industrial_coa	() ()	100	-	470	80	1200	-	10	240	270		-	-	-	-		-	-	-			-	-	-	180 -	-		-	-		-	-	-	-	-		-	-	
	EIL (Commerc	(Urban Rec)	50)	100	-	770	00	1000	-	10	500	370	0.7	-	-	-	-	-	- 200	2900	190	120	50	0E	- 70	105	640 -	-		-	-	-	-		-	-	-				-
	ESL (Comr	mercial/Industrial)											1.4						1700	3300	215	120	75	135	165	105															
Manao	ement Limits (Res.	Parkland - Commerce	al/Industrial)														700	1000	2500 - 3500	10000		170			105	100															
																	,00	Current In	vestigation Locati	ons (2020)																					
TP601	0.1-0.3	02/09/2020	Fill	<4	<0.4	7	67	10	<0.1	3	41	<0.1	<0.05	<0.5	<0.05	<5	<25	<50	<100	<100	<50	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	NAD	<u> </u>		<u> </u>	-
TP601	1.0-1.2	02/09/2020	Fill	<4	<0.4	4	12	79	0.8	1	140	<0.1	0.2	<0.5	1.9	-	<25	<50	<100	<100	<50	<50	<0.2	<0.5	<1	<3	-	-	-	-	-		-	-		-	NAD	-	<1	-	-
TP602	0.7-0.9	02/09/2020	Fill	<4	<0.4	3	13	96	0.1	3	130	<0.1	0.96	1.4	9	-	<25	<50	<100	<100	<50	<50	<0.2	<0.5	<1	<3	-	-	-	-	-	-	-	-	-		YES*	- I	-	-	-
TP603	0.3-0.5	02/09/2020	Fill	<4	<0.4	14	12	3	<0.1	19	13	<0.1	0.06	<0.5	0.2	<5	<25	<50	<100	<100	<50	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	-	-
TP604	0.2-0.3	07/04/2020	Fill	<4	<0.4	3	6	5	<0.1	2	13	<0.1	0.5	0.7	5.8	-	<25	<50	170	<100	<50	170	<0.2	<0.5	<1	<3	-	-		-	-	-	-	-	-	-	NAD	-	-	-	-
TP604	0.4-0.5	07/04/2020	Fill	<4	<0.4	6	6	28	0.2	5	27	<0.1	0.68	0.9	6.6	<5	<25	<50	<100	<100	<50	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	<0.5	<pql< td=""></pql<>
BH601	0.4-0.5	19/08/2020	Fill	<4	<0.4	27	7	23	<0.1	22	22	<0.1	<0.05	<0.5	0.1	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	- 1	<1	<0.5	<pql< td=""></pql<>
BH602	0.4-0.6	19/08/2020	Fill	<4	<0.4	3	3	16	<0.1	2	21	<0.1	0.09	<0.5	0.53	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	0.5	<pql< td=""></pql<>
BH603	0.5-0.7	19/08/2020	Fill	<4	<0.4	24	15	35	<0.1	27	55	<0.1	0.2	<0.5	1.5	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	<0.5	<pql< td=""></pql<>
BH603	0.8-1.0	19/08/2020	Fill	<4	0.9	5	20	70	0.2	14	410	<0.1	0.2	<0.5	2.2	-	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	-	-	-	-	-	-	-	-		-	NAD	-	-	-	-
BH604	0.5-0.7	19/08/2020	Fill		<0.4	6	6	39	<0.1	6	62	<0.1	0.4	0.5	5.7	-	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	-	-	-	-	-	-	-	-	-	-	NAD	-	-	· -	-
BH604	1.0-1.2	19/08/2020	Fill	<4	<0.4	7	26	150	0.1	6	240	<0.1	3.3	4.6	30	<5	<25	<50	240	110	<25	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	0.7	<pql< td=""></pql<>
BH605	0.4-0.5	19/08/2020	Fill	<4	<0.4	43	15	24	<0.1	35	53	<0.1	<0.05	<0.5	<0.05	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	<0.3	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	<1	<0.5	<pql< td=""></pql<>
BD1/20200819 a	-	19/08/2020	Fill	<4	<0.4	35	50	17	<0.1	34	52	<0.1	0.07	<0.5	0.4	-	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH605	0.9-1.1	19/08/2020	Fill	<4	<0.4	3	26	56	0.1	2	130	<0.1	0.2	<0.5	1.8	-	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<3	-	-	-	-	-	-	-	-	-	-	NAD	-	-	-	-
																			DSI (DP 2019a)																						
TP301	0.5-0.6	21/11/2018	Fill	<4	<0.4	3	5	18	<0.1	2	62	<1	0.07	<0.5	0.3	-	<25	<25	<100	<100	<25	<50	<0.2	<0.5	<1	<2	-	-	-	-	-	-	-	-	-	-	NAD	-	-	-	-
BH210	0.2-0.3	26/06/2018	Fill	<4	1	5	35	130	0.1	3	150	<0.1	1.5	2.2	16	<5	<25	<50	160	<100	<25	<50	<0.2	<0.5	<1	<3	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	NAD	-	-	-	-
																			PSI (DP 2018)																						
BH3	0.1-0.2	21/09/2017	Fill	<4	<0.4	46	63	7	<0.1	79	42	<0.1	<0.05	<0.172	0.1	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-	-	-	-
BH3	0.7-0.8	21/09/2017	Fill	<4	<0.4	1	4	29	<0.1	1	24	<0.1	0.1	0.1	0.3	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD		-	<u> </u>	-
BH3	1.3-1.43	21/09/2017	Natural Sand	<4	<0.4	<1	3	6	<0.1	<1	3	<0.1	<0.05	<0.172	<0.05	<5	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	<u> </u>		-	-
BH120	0-0.1	10/01/2018	Fill	13	<0.4	13	35	21	0.2	4	85	<0.1	0.1	0.1	0.3	<5	<25	<50	210	100	<25	<50	<0.2	<0.5	<1	<1	<0.1	<0.2	<0.2	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NAD	-		ŀ	-
															<u> </u>				IASB DSI (2019)		,																	.		<u></u>	
TP406	0.55-0.65	24/08/2019	Natural Sand	<4	<0.4	2	<1	1	<0.1	1	2	<0.1	<0.05	<0.5	<0.05	-	<25	<50	<100	<100	<25	<50	<0.2	<0.5	<1	<1	-	-	-	-	-	-	-	-	-	-	-		-	<u> </u>	-

Notes <PQL a b

Concentration comprises of sum of a number of individual analytes. All individual analytes below reported PQL Replicate of sample directly below All Chromium are assumed to exist in the stable Cr(III) oxidation state, as Cr(VI) will be too reactive and unstable under the normal environment Refer to laboratory reports for individual quantification limits for the explosive compounds Pentechlorophenol listed as initial screening level EIL given for DDT No absetso detected Not Analysed Asbestos detected below the laboratory limit of reporting 0.1g/kg Suspected asbestos detected during field screening (DP 2019a)

С

d

e NAD

*

Results in italics correpond to areas within the Stage 1 Validation Works which have already been remediated for the proposed land use

Table C2 - Groundwater results

					Metals					т	RH				МАН									VO	Cs							PA	н	Phenols
		Arsenic (Filtered)	Cadmium (Filtered)	Chromium (III+VI) (Filtered)	Copper (Filtered)	Lead (Filtered)	Mercury (Filtered)	Nickel (Filtered)	Zinc (Filtered)	E2-NAPHTHALENE	CG-C10 less BTEX (F1)	Benzene	Ethylbenzene	Toluene	Xylene (m&p)	Xylene (o)	Styrene	1,1,2-trichloroethane	1,1-dichloroethene	1,2-dichloroethane	Carbon tetrachloride	Chloroform	Hexachlorobutadiene	Tetrachloroethene	Vinyl chloride	1,2,3-trichlorobenzene	1,2,4-trichlorobenzene	1,2-dichlorobenzene	1,3-dichlorobenzene	1,4-dichlorobenzene	Chlorobenzene	Benzo(a) pyrene	Naphthalene	Phenol
FOI		0.001	0.0001	0.001	0.001	0.001	0.00005	0.001	0.001	0.05	0.01	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.0001	0.0002	0.05
NEPM 2013 T	able 1A(4) Res HSLA & B GW for Vapour Intrusion, Sand	0.001	0.0001	0.001	0.001	0.001	0.00005	0.001	0.001	0.05	0.01	0.001	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.001	0.001	0.001	0.001	0.001	0.001	0.0001	0.0002	0.05
2-4m	······································									1	1	0.8	NL	NL																			NL	
ANZG 2018 D0	GV GILs, Freshwater, slightly to moderately disturbed system	0.024 / 0.042	0.0002	0.0033/ 0.001	0.0014	0.0034	0.00006	0.011	0.008	-	-	0.95	0.08	0.18	0.075 / 0.20	0.35	-	0.0065	-	-	-	-		-	-	0.003	0.085	0.16	0.26	0.06	-	0.0001	0.016	0.0036
Field ID	Sampled Date																																	
Current Inves	tigation																																	
BH12	08/09/2020	<0.001	<0.0001	<0.001	< 0.002	<0.001	<0.00005	<0.002	< 0.001	0.075	<0.01	< 0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0002	<0.05
BH608	08/09/2020	<0.001	<0.0001	<0.001	0.009	<0.001	<0.00005	0.006	0.017	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0002	<0.0002	<0.05
BD1/2020090	3 08/09/2020	<0.001	<0.0001	<0.001	0.001	<0.001	<0.00005	0.005	0.016	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.0003	<0.0002	-
DP (2019a)																																		
BH14	12/02/2019	<0.001	0.0006	<0.001	0.007	<0.001	<0.00005	0.002	<0.001	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.05
BH10	12/02/2019	<0.001	<0.0001	<0.001	<0.001	<0.001	<0.00005	<0.001	0.008	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.05
DP (2018b)																																		
BH202		<0.001	0.0001	<0.001	0.002	<0.001	<0.00005	0.005	0.031	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BH204		<0.001	<0.0001	<0.001	0.008	<0.001	<0.00005	0.002	0.028	<0.05	0.039	<0.001	0.001	<0.001	0.009	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	0.003	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BH11		<0.001	<0.0001	<0.001	0.005	<0.001	<0.00005	<0.001	0.013	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BH14		<0.001	0.0001	<0.001	0.007	<0.001	<0.00005	<0.001	0.055	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BH16		<0.001	<0.0001	<0.001	0.012	<0.001	<0.00005	0.001	0.007	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.002	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BH17		<0.001	<0.0001	<0.001	0.003	<0.001	<0.00005	<0.001	0.008	0.074	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
BD1/2018070	6	<0.001	0.0001	<0.001	0.001	<0.001	<0.00005	0.004	0.026	<0.05	<0.01	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	-
DP (2018)																																		
BD13102017	13/10/2017	< 0.001	<0.0001	<0.001	0.007	<0.001	<0.00005	0.002	0.022	<0.05	0.012	< 0.001	< 0.001	0.001	<0.002	<0.001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.0001	< 0.0002	<0.05
GW7	13/10/2017	<0.001	<0.0001	<0.001	0.007	<0.001	< 0.00005	0.002	0.024	<0.05	0.013	<0.001	<0.001	0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	<0.001	<0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001	<0.0002	<0.05

Where no criteria is available marine water guidelines have been adopted as necessary. 95% Protection of species adopted unless where guidance indicates adopting 99% proctection e.g. due to bioaccumulation factors

Geotechnics | Environment | Groundwater

Table C3 - Waste Classification Table (All results in mg/kg unless otherwise stated)

						Metals					PAH		Phenols	Total Petr	oleum Hyd	Irocarbons			вт	EX		OCP	OPP	PCB	Asbestos
Test Pit/ Sample ID*	Sampling Depth	Soil Type	Arsenic	Cadmium	Chromium (VI)	Lead	Lead (TCLP)	Mercury	Nickel	Benzo(a) Pyrene (BaP)	BaP (TCLP)	Total PAH	Phenol	C6 - C9	C10 - C14	C15-C28	C29 - C36	Benzene	Toluene	Ethylbenzene	Xylenes	Endosulfan	Chlorpyrifos	PCB *	Asbestos
PQL		1	4	0.4	1	1	0.03 mg/L	0.1	1	0.05	0.001 mg/L	0.05	5	25	50	100	100	0.2	0.5	1	3	0.3	0.1	0.7	0.1g /kg
					1			1	S	ite Assessm	ent Criteria (SAC)			1						1				
NSW EPA (2	2014) CT1 (mg/	kg) General Solid Waste	100	20	100	100	-	4	40	0.8	-	200	288	650		10 000		10	288	600	1000	60	4	<50	NAD
NS	W EPA (2014) S	CC1 with TCLP	500	100	1900	1500	5	50	1050	10	0.04	200	518	650		10 000		18	518	1080	1800	108		<50	NAD
NSW EPA (20)14) CT2 (mg/kg	g) Restricted Solid Waste	400	80	400	400		16	160	3.2		800	1152	2600		40 000		40	1152	2400	4000	240	16	<50	NAD
NSW EPA	(2014) Restricted	d Solid Waste with TCLP	2000	400	7600	6000	20	200	4200	23	0.16	800	2073	2600		40 000		72	2073	4320	7200	432	30	<50	NAD
										Current	Investigation														
TP601	0.1-0.3	Fill	<4	<0.4	7	10	-	<0.1	3	<0.05	-	<0.05	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
TP601	1.0-1.2	Fill	<4	<0.4	4	79	-	0.8	1	0.2	-	1.9	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	-	-	-	NAD
TP602	0.7-0.9	Fill	<4	<0.4	3	96	-	0.1	3	0.96	<0.001	9	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	-	-	-	YES**
TP603	0.3-0.5	Fill	<4	<0.4	14	3	-	<0.1	19	0.06	-	0.2	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
TP604	0.2-0.3	Fill	<4	<0.4	3	5	-	<0.1	2	0.5	-	5.8	-	<25	<50	<100	110	<0.2	<0.5	<1	<3	-	-	-	NAD
TP604	0.4-0.5	Fill	<4	<0.4	6	28	-	0.2	5	0.68	-	6.6	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BH601	0.4-0.5	Fill	<4	<0.4	27	23	-	<0.1	22	<0.05	-	0.1	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BH602	0.4-0.6	Fill	<4	<0.4	3	16	-	<0.1	2	0.09	-	0.53	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BH603	0.5-0.7	Fill	<4	<0.4	24	35	-	<0.1	27	0.2	-	1.5	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BH603	0.8-1.0	Fill	<4	0.9	5	70	-	0.2	14	0.2		2.2	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	-	-	-	NAD
BH604	0.5-0.7	Fill	<4	<0.4	6	39	-	<0.1	6	0.4	-	5.7	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	-	-	-	NAD
BH604	1.0-1.2	Fill	<4	<0.4	7	150	0.3	0.1	6	3.3	<0.001	30	<5	<25	<50	130	140	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BH605	0.4-0.5	Fill	<4	<0.4	43	24	-	<0.1	35	<0.05	-	<0.05	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<0.3	<0.1	<0.1	NAD
BD1/20200819 a		Fill	<4	<0.4	35	17	-	<0.1	34	0.07	-	0.4		<25	<50	<100	<100	<0.2	<0.5	<1	<3	-		-	
BH605	0.9-1.1	Fill	<4	<0.4	3	56	-	0.1	2	0.2	-	1.8	-	<25	<50	<100	<100	<0.2	<0.5	<1	<3	-			NAD
						-			-	DSI (I	DP 2019a)														
TP301	0.5-0.6	Fil	<4	<0.4	3	18	-	<0.1	2	0.07	-	0.3	-	<25	<50	<100	<100	<0.2	<0.5	<1	<2		-	-	NAD
										PSI (DP 2018)														
BH3	0.1-0.2	Fill	<4	<0.4	46	7	-	<0.1	79	<0.05		0.725	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.1	<0.1	NAD
BH3	0.7-0.8	Fill	<4	<0.4	1	29	-	<0.1	1	0.07	-	0.82	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.1	<0.1	NAD
BH3	1.3-1.43	Natural Sand	<4	<0.4	<1	6	-	<0.1	<1	<0.05	-	<1.35	<5	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.1	<0.1	<0.1	NAD
BH120	0-0.1	Fill	13	<0.4	13	21	-	0.2	4	0.07	-	0.82	<5	<25	<50	<100	180	<0.2	<0.5	<1	<1	<0.1	<0.1	<0.1	NAD

Notes

NSW EPA (2014) Waste Classification Guidelines - Part 1: Classifying Waste

а a Duplicate sample is listed below primary sample NAD Not detected at the laboratory reporting limit of 0.1g/kg

• PCBs must be managed in accordance with the EPA's PCB Chemical Control Order 1997.

.. Asbestos detected below the laboratory limit of reporting

*** Suspected asbestos detected during field screening (DP 2019a)

	А	В	С	D	E	F	G	Н		J	К	L
1					UCL Statis	stics for Unc	ensored Ful	l Data Sets				
2												
3		User Sele	cted Options									
4	Da	ate/Time of C	omputation	ProUCL 5.11	/12/2020 2:	43:00 PM						
5			From File	WorkSheet.x	ls							
6		Fu	Il Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number	of Bootstrap	Operations	2000								
9				-1								
10												
11	B(a)P TEC	!										
12												
13						General	Statistics					
14			Total	Number of OI	bservations	22			Numbe	er of Distinct C	Observations	8
15									Numbe	er of Missing C	Observations	0
16					Minimum	0.1					Mean	0.766
17					Maximum	4.6					Median	0.5
18					SD	0.968				Std. E	rror of Mean	0.206
19				Coefficient	of Variation	1.265					Skewness	3.365
20												
20						Normal C	GOF Test					
21			S	hapiro Wilk Te	est Statistic	0.531			Shapiro W	/ilk GOF Test		
22			5% S	hapiro Wilk Cr	ritical Value	0.911		Data No	t Normal at	5% Significar	nce Level	
23				Lilliefors Te	est Statistic	0.381			Lilliefors	GOF Test		
24			5	% Lilliefors Cr	ritical Value	0.184		Data No	t Normal at	5% Significar	nce Level	
20					Data Not	t Normal at 5	% Significa	nce Level				
20												
27					As	suming Norr	nal Distribut	tion				
20			95% No	ormal UCL				95%	UCLs (Adj	usted for Ske	wness)	
29				95% Stud	ent's-t UCL	1.121			95% Adjust	ed-CLT UCL	(Chen-1995)	1.263
21									95% Modif	ied-t UCL (Jol	hnson-1978)	1.146
31 22												
32						Gamma	GOF Test					
24				A-D Te	est Statistic	2.246		Ande	son-Darling	g Gamma GO	F Test	
34				5% A-D Cr	ritical Value	0.762	D	ata Not Garr	ima Distribu	rted at 5% Sig	nificance Leve	el
30 26				K-S Te	est Statistic	0.338		Kolmog	orov-Smirn	ov Gamma G	OF Test	
27				5% K-S Cr	ritical Value	0.189	D	ata Not Garr	ıma Distribu	ited at 5% Sig	nificance Leve	el
3/				Dat	a Not Gami	na Distribute	ed at 5% Sig	Inificance Le	vel			
30												
10						Gamma	Statistics					
40					k hat (MLE)	1.355			k	star (bias cor	rected MLE)	1.2
41				Theta	a hat (MLE)	0.565			Theta	star (bias cor	rected MLE)	0.638
42				nı	u hat (MLE)	59.62				nu star (bia	as corrected)	52.82
43			М	LE Mean (bias	corrected)	0.766				MLE Sd (bia	as corrected)	0.699
44					,				Approximat	e Chi Square	Value (0.05)	37.12
40			Adjus	sted Level of S	Significance	0.0386			 A	djusted Chi S	quare Value	36.14
40	<u> </u>		- ,								· · · · ·	
4/					As	suming Gam	ma Distribu	tion				
48	9	95% Approxir	mate Gamma	UCL (use wh	en n>=50))	1.089		95% Ac	ljusted Gam	ima UCL (use	when n<50)	1.119
49									,			
50						Lognorma	GOF Test					
51			.9	hapiro Wilk Te	est Statistic	0.843		Sha	piro Wilk Lo	anormal GOF	- Test	
52			5% S	hapiro Wilk Cr	itical Value	0.911		Data Not	Lognormal	at 5% Signific	ance l evel	
53			5700	illiefore Tr	est Statistic	0.312					est	
54						0.012			Logi			

	А		В		С			D			E		F		G		Н		I			J			К		L
55						5%	% Li	lliefor	s Crit	ical	Value	• (0.184			Da	ata No	ot Lo	ognormal	at	5%	Signif	canc	ce L	.evel		
56									[Data	a Not	Logn	ormal a	nt 5%	Signific	cance	Leve	el									
57																											
58												Lo	gnorma	al Sta	atistics												
59						N	Mini	mum	of Log	gge	d Data	-2	2.303								Ν	lean	of log	jgeo	d Data	<u>1 -0</u>	.679
60						М	laxi	mum	of Log	gge	d Data	· ·	1.526									SD	of log	jgeo	d Data	1 ().875
61																											
62											Ass	umin	g Logn	orma	l Distrik	oution	1										
63									95	5% ł	H-UCL		1.18						909	% C	heb	yshev	(MV	/UE) UCL	- 1	1.175
64					95	5% C	Che	oyshe	ev (M∖	/UE	E) UCL		1.379						97.59	% C	heb	yshev	(MV	/UE) UCL	- 1	1.661
65					99	9% C	Che	oyshe	ev (M∖	/UE	E) UCL	. 2	2.215														
66																											
67									N	lon	param	etric	Distribu	ution	Free U	CL St	atistic	s									
68									Da	ta d	lo not	follov	v a Disc	cerni	ble Dist	ributio	on (0.	05)									
69																											
70											Nonpa	irame	etric Dis	stribu	tion Fre	e UC	Ls										
71									95%	CL	T UCL		1.105									95%、	Jack	knif	e UCL	- 1	1.121
72					9	5% 5	Star	ndard	Boots	stra	p UCL		1.092								9	5% Bo	otsti	rap	-t UCL	- 1	.672
73						95	5%	Hall's	Boots	stra	p UCL	. :	2.509						95%	6 P	erce	ntile E	300ts	stra	p UCL	- 1	1.125
74						9	95%	BCA	Boots	stra	p UCL	•	1.308														
75					90%	o Che	eby	shev(l	Mean	, Sc	d) UCL	•	1.385						95% (Che	ebys	hev(N	lean,	, Sd	I) UCL	- 1	.666
76				9	97.5%	o Che	eby	shev(l	Mean	, Sc	d) UCL		2.055						99% (Che	ebys	hev(N	lean,	, Sd	I) UCL	- 2	2.82
77																											
78												Sug	gested	IUC	to Use)											
79					95%	Che	bys	hev (l	Mean	, Sc	d) UCL		1.666														
80																											
81		Not	e: Sug	gestio	ns reg	gardi	ing 1	he se	lectio	on o	f a 959	% UC	L are p	rovid	ed to he	lp the	user	to s	elect the	mc	ost a	pprop	riate	95	% UC	L	
82						R	eco	mmer	ndatio	ons	are ba	sed ι	ipon da	ita si	ze, data	distri	bution	ı, ar	nd skewn	ess	6.						
83		Th	ese re	comm	endat	ions	are	base	d upo	on th	ne resi	ults o	f the sin	nulat	ion stud	lies su	umma	rize	d in Sing	h, N	Maic	hle, a	nd Le	ee ((2006)		
84	F	lowe	ver, sir	nulatio	ons re	sults	s wi	l not o	cover	all	Real V	Vorld	data se	ets; fo	or additi	onal i	nsight	the	e user ma	iy w	/ant	to cor	sult	a si	tatistic	ian.	
85																											

Appendix D

QA / QC

QA / QC PROCEDURES AND RESULTS

Q1. Data Quality Objectives

Q1.1 Introduction

The validation design is broadly in accordance with the seven step Data Quality Objective (DQO) process which is provided in Appendix B, Schedule B2 of the National Environment Protection Measure 199, as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

Q1.1.1 State the Problem

The problem to be addressed is that the suitability of the SCH / CCCC area (the site) for the proposed hospital land-use is currently unknown. The preliminary site investigation and previous intrusive investigations within the larger RCR development area have identified contaminants that may require additional investigation which will inform the need for any remediation.

Q1.1.2 Identify the Decision / Goal of the Study

The decision / goal of the validation process is to enable a statement on the suitability of the site for the proposed land-use as a hospital.

The assessment of the suitability of the site for continued use as a hospital will be based on a comparison of the analytical results for all contaminants of concern to the adopted SAC and, if necessary, compared to the 95% UCL of the mean concentrations (relevant to soil contamination under certain circumstances).

The following specific decisions will be made, as appropriate:

- What is the conceptual site model (i.e., sources, receptors, migration pathways, exposure)?
- Do the existing fill materials and / or natural soils pose a potential risk to identified receptors?
- Does the existing groundwater beneath the site pose a potential risk to identified receptors?
- Is the data sufficient to make a decision regarding the abovementioned risks, the compatibility of the site for the proposed land use or are additional investigations required?
- Does contamination at the site, if encountered, trigger the Duty to Report requirements under the *Contaminated Land Management Act* 1997 (NSW)?
- Are there any off-site migration issues that need to be considered?

Q1.1.3 Identify Inputs to the Decision

Inputs into the decisions are as follows:

- Review of previous contamination investigation reports by DP;
- Review of regional geology, topography, ASS risk mapping and hydrogeology as reported in the PSI;

- Intrusive sampling and testing on collected at a combination of targeted and grid-based sampling locations and analysed for the relevant contaminants of concern;
- Field and laboratory QA / QC data to assess the suitability of the environmental data for the assessment;
- All analysis undertaken at a qualified laboratory NATA accredited for the analysis undertaken; and
- The results will be compared with the SAC discussed in Section 9.

Q1.1.4 Define the Study Boundaries

Douglas Partners Geotechnics | Environment | Groundwater

The study boundary is the boundary of the site shown on Drawing 1, Appendix A.

Q1.1.5 Develop an Analytical Approach (or Decision Rule)

The information obtained during the validation process will be used to characterise the site in terms of remaining contamination issues and risk to human health and / or the environment. The decision rules used in validating the site will be as follows:

- Laboratory test results for fill / soil will be assessed individually or statistically, if considered appropriate, to determine the 95% UCL of the mean concentration for each analyte or analyte group (of like materials);
- Laboratory test results for targeted locations (and identified 'hot spots') will be assessed individually;
- The adopted SAC will be from EPA endorsed guidelines. Where such criteria are not available, other recognised national or international standards will be used;
- The contaminant concentrations in fill / soil should meet the following criteria, or further investigation or remedial action is required if:
 - o The concentration of the contaminant is more than 2.5 times the SAC. Any location more than 2.5 times the adopted site criteria is classified as a 'hotspot', requiring further assessment / management;
 - o The calculated 95% UCL for a relevant area and discrete impacted fill / soil stratum (excluding any 'hotspot' concentrations) exceeds the adopted SAC; and
 - o The standard deviation of the results is greater than 50% of the SAC.

Field and laboratory test results are considered useable for the assessment after evaluation against the following Data Quality Indicators (DQIs):

- Precision A measure of variability or reproducibility of data;
- Accuracy A measure of closeness of the data to the 'true' value;
- Representativeness The confidence (qualitative) of data representativeness of media present on site;
- Completeness A measure of the amount of usable data from a data collection activity; and
- Comparability The confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event.

Q1.1.6 Specify Limits on the Decision Error

Decision errors for the proposed validation assessment will be minimised and measured by the following:

- Compare new data with available previous investigation data to determine the possible range of the parameters of interest;
- The sampling regime will target key strata identified to account for site variability;
- Sample collection and handling techniques will be with reference to DP's Field Procedures Manual;
- Samples will be prepared and analysed by a NATA accredited laboratory with the acceptance limits for laboratory QA / QC parameters based on the laboratory reported acceptance limits and those stated in NEPC (2013);
- The analyte selection is based on the available site history, past site activities, site features and the findings of the previous investigations. The potential for contaminants other than those proposed to be analysed is currently considered to be low;
- The SAC will be adopted from established and EPA endorsed guidelines where available. The SAC have risk probabilities already incorporated;
- A significance level of 0.05 will be adopted for data with statistical analysis of 95% UCL of average concentrations; and
- Only NATA accredited laboratories using NATA endorsed methods will be used to perform laboratory analysis. Where NATA endorsed methods are not used, the reasons will be stated. The effect of using non-NATA methods (if relevant) on the decision making process will be explained.

Q1.1.7 Optimise the Design for Obtaining Data

Sampling design and procedures that will be implemented to optimise data collection for achieving the DQOs included the following:

- Only NATA endorsed methods are used to perform laboratory analysis whenever possible;
- Grid based soil sampling (within access constraints) will generally be used to provide representative coverage of the site;
- Where possible, targeted samples will be incorporated into the grid based sampling;
- Sample numbers will generally comply with those recommended in the NSW EPA (1995) Sampling Design Guidelines;
- To optimise the selection of soil samples for chemical analysis, all samples collected will be screened using a calibrated photoionization detector (PID) allowing for site assessment and sample selection. In addition, additional soil samples will be collected but kept 'on hold' pending details of initial analysis and will be analysed if further delineation is required; and
- Adequately experienced environmental scientists / engineers will be chosen to conduct field work and sample analysis interpretation.

Q2. Field and Laboratory Quality Control

The field and laboratory QC procedures and results are summarised in the following Table Q2. Reference should be made to the fieldwork and analysis procedures in Section 6 and the laboratory results certificates in Appendix F for further details.

ltem	Evaluation / Acceptance Criteria	Achievement
Analytical laboratories used	NATA accreditation	yes
Holding times	Various based on type of analysis	yes
Laboratory replicates	10% of primary samples; <50% RPD (>5 x PQL)	yes ¹²
Trip Spikes	1 per sampling event; 60-140% recovery	yes ³
Trip Blanks	1 per sampling event; <pql< td=""><td>yes ²</td></pql<>	yes ²
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>yes</td></pql<>	yes
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	yes
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	yes
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	yes

Table Q2: Field and Laboratory QC

1 - refer to qualitative assessment of results overall in section Q2.1

2- Quantity sufficient for samples analysed for chemical analytes, including soil and groundwater.

3 - refer to assessment of frequency in section Q2.3 and Q2.4

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

Q2.1 Intra-Laboratory Replicates

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory ELS and as a measure of consistency of sampling techniques. A discussion of the intralaboratory replicate samples is presented in DP (2018) and DP (2019a) as appropriate. The comparative results of analysis between original and intra-laboratory replicate samples for the current (2020) sampling are summarised in Table Q3.

Note that, where both samples are below 5 times the LOR/PQL the RPD has not been calculated. Where one sample is reported below LOR/PQL, but a concentration is reported for the other which is at least 5 times the PQL/LOR, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.

Table Q3: Intra-Laboratory Duplicates

							ľ	Netals					P/	٩H			т	RH			BTE	X	
Lab	Sample ID	Date Sampled	Units	Arsenic	Cadmium	Chromium (III+VI)	Copper	Lead	Mercury	Nickel	Zinc	Napthalene	Benzo(a)pyrene	Benzo(a)pyrene TEQ	Total PAH	F1 ((C6-C10)-BTEX)	F2 (>C10-C16 less Naphthalene)	F3 (>C16-34)	F4 (>C34-40)	Benzene	Toluene	Ethylbenzene	Total Xylenes
	·								Soil														
ELS	BH605	19/08/2020	mg/kg	<4	<0.4	43	15	24	<0.1	35	53	<0.1	<0.05	<0.5	<0.05	<25	<50	<100	<100	<0.2	<0.5	<1	<3
ELS	BD1/20200819	19/08/2020	mg/kg	<4	<0.4	35	50	17	<0.1	34	52	<0.1	0.07	<0.5	0.4	<25	<50	<100	<100	<0.2	<0.5	<1	<3
	Difference		mg/kg	0.0	0.0	8.0	35.0	7.0	0.0	1.0	1.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	RPD		%	-	-	20.5	107.7	34.1	-	2.9	1.9	-	-	-	155.6	-	-	-	-	-	-	-	-
								G	roundwate	r													
ELS	BH608	8/09/2020	ug/L	<1	<0.1	<1	9	<1	<0.05	6	17	<0.2	0.2	<0.5	0.82	<10	<50	<100	<100	<1	<1	<1	<3
ELS	BD1/20200908	8/09/2020	ug/L	<1	<0.1	<1	1	<1	<0.05	5	16	<0.2	0.3	<0.5	1.5	<10	<50	<100	<100	<1	<1	<1	<3
	Difference		ug/kg	0	0	0	8	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RPD		%	-	-	-	160	-	-	6	-	-	-	-	-	-	-	-	-	-	-	-	-

The calculated RPD values were generally within the acceptable range of \pm 30 for inorganic analytes and \pm 50% for organics with the with the exception of those in bold. However, this is not considered to be significant because:

- The number of replicate pairs being collected from fill soils which were heterogeneous in nature;
- Soil replicates, rather than homogenised soil duplicates, were used to minimise the risk of possible volatile loss, hence greater variability can be expected;
- The majority of RPDs within a replicate pair being within the acceptable limits; and
- All other QA/QC parameters met the DQIs.

Q2.2 Trip Spike

The purpose of a trip spike is to assess the potential for loss of volatile analytes to have occurred between the time of collection and analysis of the sample by the laboratory.

For soils, laboratory preparation of the trip spike involved putting 1mL of BTEX (using a 1500 ppm BTEX trip spike standard) into two jars which were cross referenced and labelled 'trip spike' and 'control'. Both jars were sealed. The trip spike was taken onto site and subject to the same jar storage and transfer as the field samples. The control was stored by the laboratory in the refrigerator. Following receipt of the trip spike, the laboratory analysed both the trip spike and corresponding control with results of the trip spike being expressed as the % difference from the control sample.

For water trip spikes, the laboratory prepared the trip spike by injecting 220 μ L of BTEX into the trip spike. The results were then analysed and expressed as % of theoretical value of a 50 ppb standard.

The generally acceptance limit for trip spikes is 60-140% in difference compared to the control or standard.

The results of the laboratory analysis for the trip spikes included with the current samples (2020) are shown in Table Q4.

Sample ID	Lab Report	Benzene	Toluene	Ethylbenzene	m + p Xylene	o Xylene
TS/20200819	ELS 249420	99	104	103	105	103

Table Q4: Trip Spike Results - Soils (% Recovery)

Results indicate that the percentage loss for BTEX during the trip was minimal and therefore appropriate preservation techniques were employed. The frequency was deemed acceptable given the lack of detection of volatile contaminations and minimal losses during handling / transport despite that sampling occurred over multiple smaller sampling events.

The same outcomes were reported for trip spike samples included in DP (2018) and DP (2019a).

Q2.3 Trip Blank

The purpose of a trip blank is to assess the potential for transfer of contaminants into samples to have occurred between the time of collection and analysis of the sample by the laboratory. Laboratory prepared soil field blanks were taken out to the field unopened, subjected to the same preservation methods as the field samples, then analysed for the purposes of determining whether transfer of contaminants into the blank sample had occurred prior to reaching the laboratory. The results of the laboratory analysis for the field blanks included with the current samples (2020) are shown in Table Q5.

Table Q5: Trip Blank Results - Soils (mg/kg)

Sample ID	Lab Report	euszue	Toluene	Ethylbenzene	m + p Xylene	o Xylene
TB/20200819	ELS 249420	<0.2	<0.5	<1	<2	<1

The concentrations of the analytes were all below laboratory detection limits indicating that significant cross contamination had not occurred during the course of the round trip from the site to the laboratory. The frequency was deemed acceptable given the lack of detection of volatile contaminations and lack of cross contamination during handling / transport despite that sampling occurred over multiple smaller sampling events.

The same outcomes were reported for trip blank samples included in DP (2018) and DP (2019a).

Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following Data Quality Indicators (DQIs):

- Completeness A measure of the amount of usable data from a data collection activity;
- Comparability The confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness The confidence (qualitative) of data representativeness of media present on-site;
- Precision A measure of variability or reproducibility of data; and
- Accuracy A measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q6.

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled;
	Preparation of logs, sample location plan and chain of custody records;
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM);
	Completion of chain of custody (COC) documentation;
	NATA accredited laboratory results certificates provided by the laboratory;
	Mostly satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section Q2.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project;
	Experienced sampler(s) used;
	Use of NATA registered laboratories, with test methods the same or similar between laboratories;
	Satisfactory results for field and laboratory QC samples.
Representativeness	Target media sampled;
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs;
	Samples were extracted and analysed within holding times;
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures;
	Acceptable RPD (generally) between original samples and replicates;
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures;
	Satisfactory results for all field and laboratory QC samples.

Table Q6: Data Quality Indicators

Based on the above, it is considered that the DQIs have been met. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Appendix E

Logs

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.7 AHD **EASTING:** 337095 **NORTHING:** 6245556.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH601 PROJECT No: 72505.18 DATE: 19 & 27/08/2020 SHEET 1 OF 2

		Description	Degree of	υ	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
R	Depth (m)	of	weathening	aphi Log		Spacing (m)	B - Bedding J - Joint	e	e %.	Q.,	Test Results
		Strata	XW MW SW FR	<u>ତ</u> _	High Low	0.05 0.100 0.	S - Shear F - Fault	۲ ۲	ပိမ္မိ	8 8 8	& Comments
F	- 0.09			ö. °C				F	-		
ŀ	- 0.3	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel,		×							
22	- 0.6	FILL/Gravelly SAND: medium.							1		
-	- - -1	brown, fine igneous subangular and subrounded, fine sandstone gravel, moist				 		E/D			
-		SAND SP: fine to medium, pale grey, moist, loose, aeolian									
-54	;- - 1.8										
ŧ	-2	yellow-brown, trace silt, moist,							-		
E	E	medium dense, aeolian						s			4,5,6 N = 11
ŧ	-								-		
-23	F										
Ē	-3										
ŧ	-	Below 3.0m: dark red-brown, apparently dense					Unless noted otherwise, rock is fractured along				
Ē	Ē						rough, planar bedding				
E	ļ.						planes apping at 5 25	D			
ŀ	ŧ,	Below 4.0m: wet									18/50
Ē	4.05 4.11	SANDSTONE: medium to coarse		**			4.05m: CORE LOSS:	S			refusal $PI(A) = 0.04$
ŧ	ŀ	grained, pale grey and yellow brown, with 10% decomposed seams, very					60mm				PL(A) = 0.04
Ē.		low then low and medium strength,									PL(A) = 0.4
Ē	'E	slightly fractured, Hawkesbury			│ │ │ ┎┼┚ │ │ │ │						
ŧ	-5	Sandstone									PL(A) = 0.28
Ē	E		╎┟┼┦╎╎		╽┎┼╌┛╎╷╷╷╎╎		5.29m: Ds 140mm				
ŧ	-					i ih ii	5.5m: Ds 10mm	с	98	77	
-22	-		│ ╎ <mark>└</mark> ┿┿┓╎				5.68m: Ds 90mm				
Ē	6 6.0	SANDSTONE: medium to coarse									PL(A) = 0.85
ŧ	-	grained, pale grey, cross bedded at									
ŧ	-	weathered then fresh, slightly									
-64 -64	2	fractured, Hawkesbury Sandstone	╎╎╎╎╚┓				6.65m: Ds 10mm, fe, st				
ŧ	-7										PL(A) = 0.72
F	F										
Ē	75										
4	2	SANDSTONE: medium grained, pale grey, medium to high strength,					7.59m: B10°, pl, ro, cly				
Ē	L.	fresh, unbroken, Hawkesbury					1mm				PI(A) = 0.88
E	F°	Sandstone	<u> </u>			i ii i					FL(A) = 0.00
ŧ	ŧ										
Ē	.[: !! ! 5	8.6m: Ds 20mm	С	100	99	
-	ļ										
ŧ	-9										PL(A) = 1.2
Ē	E										
ŧ	ļ										
46	Ē										
	1	1					1	1	1	1	1

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HW to 4.0m, HQ to 4.0m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 4.0m, NMLC Coring to 16.02m

 WATER OBSERVATIONS:
 Water seepage at 3.95m, 20% water loss below 8.0m

 REMARKS:
 Bulk samples taken 0.5-1.5m, 1.5-2.0m & 2.0-3.8m

SAN	IPLIN	G & IN SITU TESTING	G LEGEND	
A Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)	
B Bulk sample	P	Piston sample	PL(A) Point load axial test Is(50) (MPa)	
BLK Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MPa)	
C Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	
D Disturbed sample	⊳	Water seep	S Standard penetration test	
E Environmental sample	Ŧ	Water level	V Shear vane (kPa)	Geotechnics Environment Groundwate

CLIENT:

PROJECT:

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

SURFACE LEVEL: 55.7 AHD **EASTING:** 337095 **NORTHING:** 6245556.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH601 PROJECT No: 72505.18 DATE: 19 & 27/08/2020 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength		Fracture	Discontinuities	Sa	mpli	ng & I	In Situ Testing
ā	Depth (m)	of Strata	W M M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H	Graph Log	Very Low Medulum Very High Very High Ex High	0.01	(m) (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-11	SANDSTONE: medium grained, pale grey, medium to high strength, fresh, unbroken, Hawkesbury Sandstone <i>(continued)</i>						10.68m: B0°, pl, ro, cly vn & J80-90°, un, ro, cln 10.76m: B0°, pl, ro, cly co	С	100	98	PL(A) = 1.3 PL(A) = 0.96 PL(A) = 1.3
· · · · · · · · · · · · · ·	- 13 	Between 14.2-15.85m: cross bedded at 5-15°						14.35m: B5°, pl. ro. clv				PL(A) = 0.97 PL(A) = 1
	- 15							vn 15.17m: B (x2) 5°, pl, ro, cly vn	С	100	97	PL(A) = 0.98 PL(A) = 0.68
	- 17	Bore discontinued at 16.02m Target depth reached										
	- 18 - 18 											

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HW to 4.0m, HQ to 4.0m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 4.0m, NMLC Coring to 16.02m

 WATER OBSERVATIONS:
 Water seepage at 3.95m, 20% water loss below 8.0m

 REMARKS:
 Bulk samples taken 0.5-1.5m, 1.5-2.0m & 2.0-3.8m

SAM	IPLIN	G & IN SITU TESTING	LEG	END]		
A Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)			
B Bulk sample	Р	Piston sample	PL(/	A) Point load axial test Is(50) (MPa)			Dougloo Doutroom
BLK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test ls(50) (MPa)			Douolas Pariners
C Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D Disturbed sample	⊳	Water seep	S	Standard penetration test		· /	
E Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwate

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55 AHD EASTING: 337097.5 NORTHING: 6245571.8 DIP/AZIMUTH: 90°/-- BORE No: BH602 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

Γ		Description	Degree of	5	Rock Strongth	Fracture	Discontinuities	Sa	ampling	& In Situ Testing
님	Depth	of		n B B		Spacing	B - Bedding J - Joint	e	e%⊡	Test Results
	(11)	Strata	S \$ \$ \$ 0 4	5	EX Low ery Low dediur figh cov cov figh cov figh figh cov figh) 	S - Shear F - Fault	ηζ	NG SO	& & Comments
8	- 0.09									
-	0.28	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grev. medium, moist		$\overline{\mathbf{X}}$		 		E/D		
-	0.7	FILL/SAND: fine to medium, dark brown, with silt, moist		\sim				E/D		
-	-	SAND SP: fine to medium, pale grey, moist, aeolian								
-						 				
	-2 - 2.2	SAND SP: fine to medium,						s		4,3,5 N = 8
-	- 2.6	orange-brown, apparently cemented, iron indurated, ("coffee rock"), aeolian								
52	-3	SAND SP: fine to medium, yellow-brown, moist, aeolian						D S		5,25/125
-	3.35	SANDSTONE: medium grained, pale yellow-brown, apparently very		<u></u> :						Telusai
51	- 4	low to low strength, Hawkesbury Sandstone Bore discontinued at 3.35m								
-	- - -	Target depth reached								
-										
50	-5									
-	- - -					 				
49	-6									
-										
18	- 7									
	- - -									
-						 				
47	-8									
-	-									
46	-9									
-	- - -									
Ē	-									

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 3.35m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Bulk sample taken at 0.7-1.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121809 installed in well

	SAME	LIN	G & IN SITU TESTING	G LEGEND		
A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)		
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)		
BL	K Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (MF	a)	
C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)	´	
D	Disturbed sample	⊳	Water seep	S Standard penetration test		
Ē	Environmental sample	Ţ	Water level	V Shear vane (kPa)		Geotechnics Environment Groundwater

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

CLIENT: PROJECT: SURFACE LEVEL: 54.2 AHD EASTING: 337102.9 NORTHING: 6245608 **DIP/AZIMUTH:** 90°/--

BORE No: BH603 PROJECT No: 72505.18 DATE: 19 & 26/08/2020 SHEET 1 OF 2

Γ		Description	Degree of	. <u>0</u>	Rock Strength	Fracture	Discontinuities	Sa	mpli	ng & I	In Situ Testing
R	Depth (m)	of	Weathering	Log		Spacing (m)	B - Bedding J - Joint	be	ore S. %	D %	Test Results
		Strata	X A M A X A X A X A X A X A X A X A X A	U	Very Very Very	0.01 0.10 0.10 1.00	S - Shear F - Fault	Ţ	ပိမ္မိ	Я,	Comments
-25	0.04	ASPHALTIC CONCRETE		ġ. ℃ ' œ' .				E			
ŧ	0.45	sub-angular, fine igneous gravel, ∖grey, medium, moist						E/D			
ł	- 0.8	FILL/Gravelly SAND: medium,		\bigotimes							
[-1	subrounded, fine sandstone gravel,		\bigotimes							
- 20	- 1.3	FILL/Silty SAND: fine to medium,		\mathcal{F}			Unless noted otherwise, rock is fractured along	E/D			
Ē	- 1.7	dark brown, non-plastic fines, with subangular, fine sandstone gravel,		·/./			rough, planar bedding planes dipping at 0-20°				
Ē	-2	Clayey SAND SC: fine to medium,									PL(A) = 0.28
22	-	orange-brown, low plasticity, moist, residual									
Ē	-	below 1.5m: pale orange-brown					2.56m: B0°, pl. ro. clv vn				PL(A) = 0.62
Ē	Ę	grained, orange-brown and pale grey, low and medium strength with					2.73m: Ds 10mm	с	96	76	
- 10	-3	extremely low strength bands, highly weathered, slightly fractured.									PL(A) = 0.33
Ē	-	Hawkesbury Sandstone					3.3m: Cs 60mm				
Ē	-										
Ē	- 3.91 -4						3.600. CORE LOSS. 110mm 3.94m [·] B0° pl. sm. clv				PL(A) = 0.26
-33	- 4.2	SANDSTONE: medium to coarse grained, pale grey with some					1mm				
Ē	-	yellow-brown, cross bedded at 20°, medium then high strength, slightly					4.61m: B0°, pl, sm, cly				
Ē	-5	weathered,					1mm				PL(A) = 0.55
-64	-						5 28m [.] B (x3) 10° pl ro	C	100	88	
Ē	-						cly vn		100		
Ē											
48	-6										PL(A) = 1.8
Ē	-						6.31m: Ds 50mm				
Ē	-						6.56m: J40°, pl, ro, cln 6.64m: Ds 10mm				
Ē	-7 7.04			\geq			6.92m: CORE LOSS: 120mm				PL(A) = 1
-	7.25	SANDSTONE: medium grained,									
F	-	strength, fresh, slightly fractured to unbroken. Hawkesbury Sandstone					7.75 D. 10				
E	-8						7.75m: Ds Tumm				PL(A) = 0.92
46	Ē										
E	E						8.46m: B0°, un, cly co	C	97	97	
E	Ļ										
45	-										1 (-7) - 0.40
ł	-										
ŀ											

RIG: Vac Truck, Hand Tools & Bobcat DRILLER: VAC Group LOGGED: KR/JJH/TM CASING: HW to 1.8m, HQ to 1.8m TYPE OF BORING: Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.7m, Solid flight auger to 1.8m, NMLC Coring to 16.00m WATER OBSERVATIONS: Water seepage at 1.8m REMARKS: Bulk sample taken 0.45-0.8m

A Auger sample G Gas sample PID Photo ionisation detector (ppm) B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa) BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	١.
BLK Block sample U _x Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample V Shear vane (kPa)	

Douglas Partners Geotechnics | Environment | Groundwater

SURFACE LEVEL: 54.2 AHD EASTING: 337102.9 NORTHING: 6245608 **DIP/AZIMUTH:** 90°/--

BORE No: BH603 PROJECT No: 72505.18 DATE: 19 & 26/08/2020 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
R	j Depth (m)	of Strata	XW MW SSW FR SW	Graph Log	Very Low Medium Medium Kery High Ex High	500 (m) (m) 500 000 (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	- 10.09	SANDSTONE: medium grained, pale grey, medium then high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					10.02m: CORE LOSS: 70mm	С	98	98	PL(A) = 0.92 PL(A) = 0.84
	- 12										PL(A) = 0.48
	- 14						13.55m: J30°, pl, ro, cln 14.2m: B0°, pl, ro, cly vn	С	100	99	PL(A) = 0.01
30	- 15						14.65m: J30°, pl, ro, cly vn 14.68m: B0°, pl, ro, cly vn				PL(A) = 1.1 PL(A) = 1.1
38		Bore discontinued at 16.0m Target depth reached									
	- 17										
	- 19										
35											

RIG: Vac Truck, Hand Tools & Bobcat DRILLER: VAC Group LOGGED: KR/JJH/TM CASING: HW to 1.8m, HQ to 1.8m TYPE OF BORING: Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.7m, Solid flight auger to 1.8m, NMLC Coring to 16.00m WATER OBSERVATIONS: Water seepage at 1.8m REMARKS: Bulk sample taken 0.45-0.8m

	SAMPLING & IN SITU TESTING LEGEND												
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)								
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)								
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)								
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)								
D	Disturbed sample	⊳	Water seep	S	Standard penetration test								
E	Environmental sample	ž	Water level	V	Shear vane (kPa)								

Douglas Partners Geotechnics | Environment | Groundwater

CLIENT: PROJECT:

SCH Stage 1 / CCCC Project LOCATION: High Street and Hospital Road, Randwick

Lendlease Building Pty Ltd

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 54.9 AHD **EASTING:** 337107 **NORTHING:** 6245631.8 **DIP/AZIMUTH:** 90°/-- BORE No: BH604 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

Γ		Description	Degree of	Rock Strength	Fracture	Discontinuities	Sampling &	n Situ Testing
R	Depth (m)	of	Inde inde		Spacing (m)	B - Bedding J - Joint	e e% Q	Test Results
	(,	Strata	G FR SW W FR		0.05	S - Shear F - Fault		ھ Comments
E	0.075	ASPHALTIC CONCRETE					F	
-	0.24	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist					E	
	- 1	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist					E	
-	16	FILL/SAND: fine to medium, brown, trace subrounded, fine to coarse sandstone gravel, moist						
53	-1.0 -1.9 -2	Between 1.0-1.2m: large brick fragment, dark brown silty sand, with charcoal					E/D D	
-	-	Clayey SAND SC: fine to medium, orange-brown, low plasticity, moist, residual					S	3,2,3 N = 5
	- 3	SAND: fine to medium, orange-brown, with clay, moist, loose, residual					D	
-	- 3.4 - 3.45 [/]	Below 2.7m: wet Below 2.95m: with pale grey sand, medium dense					S	10,11,17 N = 28
	-4	SANDSTONE: meaium grained, pale grey, very low to low strength, Hawkesbury Sandstone Bore discontinued at 3.45m						
-	-	Target depth reached						
- 09	-5							
-	-							
49	-6							
-								
1	-7 -7 -							
	- - - -							
	-8							
46								
-	-9 - - -							
45								

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.9m, Solid flight auger to 3.45m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

 REMARKS:
 Bulk samples taken 0.4-1.6m & 1.7-1.9m

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 PILD
 Photo ionisation detector (ppm)

 B Buk sample
 P Piston sample
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 B.K Block sample
 U, Tube sample (x mm dia.)
 PL(D) Point load axial test Is(50) (MPa)

 C Core drilling
 W Water sample
 PD Procket penetrometer (KPa)

 D Disturbed sample
 V Water seep
 S Standard penetration test

 E Environmental sample
 W Water level
 V Shear vane (kPa)

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD **EASTING:** 337109.8 **NORTHING:** 6245649.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 1 OF 2

Γ			Description	Deg	ree of	.u	Rock Strength	_	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
R	De	pth n)	of	vvcai	nemig	Log		Vate	Spacing (m)	B - Bedding J - Joint	e	re .%	Q.,	Test Results
		,	Strata	NX N M	N S R	Ū	Ex Lov Very L Mediu Very F Very F	> ¹⁰⁰	0.05 0.10 0.50 1.00	S - Shear F - Fault	Tyi	Co Rec	R 08%	& Comments
E	5	0.11	ASPHALTIC CONCRETE			<u>ю.</u> О					E/D			
55	3-	0.24	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grev medium moist								E*/D			
-	-1	0.6	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist								E/D			
- 72	5	1.35	Between 0.4-0.55m: large brick											
-	-2	1.5	FILL/SAND: fine to medium, brown, trace subrounded, fine to coarse sandstone gravel, silt, and glass fragment, moist											
53	3		SAND SP: fine to medium, pale grey, moist, aeolian			V. / /.		İ			s			1,3,2 N = 5
-	- - -	2.5	Clayey SAND SC: fine to medium, orange-brown, low plasticity, moist, loose, residual			, , , , , , , , , , , , , , , , , , ,				Unless noted otherwise, rock is fractured along rough, planar bedding	D			
ŧ	-3	2 10	Below 2.2m: with ironstone bands			•/./		>		planes dipping at 0-20°	S			7,25/30 refusal
-6	5	3.10	plasticity, pale grey, w~PL, residual (Extremely weathered sandstone)											PL(A) = 0.23
È	Ę		SANDSTONE: medium to coarse grained, pale grey and red-brown,						┆┎╎	3.7m: Cs 50mm				
-	-4		low to high strength, moderately and highly weathered, slightly fractured to unbroken. Hawkesbury	İİ				i		4m: J60°, pl, ro, fe st				PL(A) = 0.94
5			Sandstone								с	98	96	
-	-	4.94								4.9m [·] CORE LOSS [·]				PI(A) = 1.2
- 02	- 5									40mm				FL(A) - 1.3
-														
-	-6	5.75	SANDSTONE: medium grained, pale grey, medium strength, fresh,					i		5.00m. DS 30mm				PL(A) = 0.76
4	2		slightly fractured to unbroken, Hawkesbury Sandstone											
ŀ	-									6.48m: Ds 60mm				
Ē	-7							ļ						PL(A) = 0.84
48	2										с	100	98	
Ē										7.57m: B0°, pl, ro, cly vn				
È	-8							ļ						PL(A) = 0.84
47	-							İ						
-														
	-9	9.0	SANDSTONE: medium grained,											PL(A) = 1.3
46	2 - -		slightly fractured to unbroken, Hawkesbury Sandstone								с	100	100	
-			·							»>				

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

REMARKS: *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD EASTING: 337109.8 NORTHING: 6245649.5 DIP/AZIMUTH: 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 2 OF 2

Γ			Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
ā	De ار	epth m)	of	11 out ioning	Log		Spacing (m)	B - Bedding J - Joint	be	ore S. %	aD %	Test Results
	Ì	,	Strata	KW HW K SW FR	G	Ex Lo Very Very Very Very	0.05 0.10 1.00	S - Shear F - Fault	Ţ	ပိမ္ရွိ	R ~	Comments
			SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.7-12.17: cross bedded at 0-10°						С	100	100	PL(A) = 1.3 PL(A) = 1.6
	- 12 							12.15m: B0°, pl, ro, cln				PL(A) = 2
	-13								с	100	97	PL(A) = 1.4
	- 14		Between 13.9-15.4m: cross bedded at 0-10°					13.97m: B5°, pl, cly 1mm 14.25m: B10°, pl, cly vn 14.33m: B10°, pl, cly vn				PL(A) = 1.4
	- 15 							15.38m: Ds 10mm	с	100	99	PL(A) = 2
Ę		16 28					┆┊┆┏┿┛┆	16.11m: Ds 10mm				FL(A) - 2.2
	86 - - - - - - - - - - - - - - - - - - -	10.20	Bore discontinued at 16.28m Target depth reached									
	- 18											
	- 19 											

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

REMARKS: *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

 SAMPLING & IN SITU TESTING LEGEND

 A Auger sample
 G Gas sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample
 Ploton sample

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 1 OF 2

Γ			Description			Degree of Weathering			Rock Strength	2	Fracture	Discontinuities	Sampling &			In Situ Testing	
RL	Depth (m)		of			riodationing		Log		Vate	Spacing (m)	B - Bedding J - Joint	be	see%	D D	Test Results	
	(,		Strata	Ň		SW SW	Ξ		Ex Lo Medic Ex High		0.05	S - Shear F - Fault	∣≻	ပိမ္ထိ	R N	∝ Comments	
52	0.0	6	ASPHALTIC CONCRETE				ġ.	0.					D				
ŧ	-	-	FILL/ROADBASE: GRAVEL, coarse, dark grev. igneous.	li	į	ij	K	\times			i ii ii						
Ē	- 0.	6	subangular-subrounded, dry,				K	×									
E	Ę		FILL/ GRAVEL: medium.		Ì		$\left \right\rangle$	\times					E/D				
-2	-1		yellow-brown, sandstone, with clay,				K	\times								311	
Ē	[1	4	FILL/ SAND: fine to medium, pale					Σ					S			N = 8	
ŧ	- ''		grey, dry	li													
ŧ	F	╞	SAND SP: fine to medium, brown,														
E	2		Below 1.8m: moist	li	i								E/D				
Ē	ĺ.								$\cdot $								
Ē	E		Below 2 5m ⁻ medium dense	İ	İ	İİ	ŀ.										
ŧ	ţ												s			5,7,9 N = 16	
F.	-3								·			rock is fractured along	<u> </u>				
Ę	. 3.	Ί	SANDSTONE: medium to coarse		Ï							rough, planar bedding planes dipping at 0-20°					
ŧ	-		low strength, Hawkesbury														
Ē	- 3.	6	SANDSTONE: medium to coarse	Ì	Ì											PL(A) = 0.14	
ł.	-4		grained, pale grey with some pale													PL(A) = 0.23	
14	? - -		strength, slightly weathered, slightly		ļ												
E	[fractured, Hawkesbury Sandstone				::	:::									
ŧ	-						::	::::					с	100	99		
Ē	5			i	i	iii	::	::::									
-4																PL(A) = 0.61	
ŧ	F			li	į	i i i						5.24m: Ds 10mm					
E	E							:::									
ŧ	-			ļ	İ	i i i											
-9	-6															PL(A) = 0.68	
E	6.2	5	SANDSTONE: medium grained,				1										
ŧ	-		pale grey, medium strength, tresh, slightly fractured to unbroken,	li													
Ē	E		Hawkesbury Sandstone					:::									
42	-7			li	i			:::								PL(A) = 0.46	
ŧ	F												С	100	98		
E	[ļį	į	i i i		:::				7.37m: Ds 20mm					
ŧ	-							:::									
Ē	-8							:::								PL(A) = 0.76	
ŀ				li													
ŧ	-																
Ē	E			li				:::			┆┊┇┍┿╝╵	8.68m: Ds 40mm					
ŀ,	-9										╎╷╵╵┖┿┿┓	8.91m: Ds 20mm				PL(A) = 0.68	
4	Ē			!	į												
ŧ	ļ												С	100	96		
ŧ	ŧ						 ::	:::									
E	-			Ľ				:::									

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

SAMPLING & IN SITU TESTING LEGEND													
A A	Auger sample	G	Gas sample	PID Photo ionisation detector (ppm)				_	_	-			_
BE	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)									
BLK E	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test ls(50) (N	IPa))		41.					
C C	Core drilling	Ŵ	Water sample	pp Pocket penetrometer (kPa)		·				140			
DD	Disturbed sample	⊳	Water seep	S Standard penetration test				11					~ <i>i i</i>
E E	Environmental sample	¥	Water level	V Shear vane (kPa)					Geotechnics	Envir	onmen	nt I (Groundwater
L				()		_							
SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng &	In Situ Testing
R	Depth (m)	of Strate		Graph Log		Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core ec. %	gD %	Test Results &
5	-	Strata SANDSTONE: medium grained,	X H M S H	-		0.0		-	۳ ۳		Comments PL(A) = 0.52
41 41 41 41 41 41 41 41 41 41 41 41 41 4	- - - - - - - - - - - - - - - - - - -	pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>					11.09m: Ds 110mm 11.43m: Ds 60mm	с	100	96	PL(A) = 0.45
-4	- - 12 -										PL(A) = 0.88
39	- 13							С	100	98	PL(A) = 1
38	- - - - - - - - - - -						14.35m: B0°, pl, ro, cly ∖vn 14.53m: Ds 40mm				PL(A) = 0.72
	- 15							с	100	98	PL(A) = 0.64
-%	-16						15.95m: Ds 50mm				PL(A) = 0.08
35	- 17	Bore discontinued at 16.19m Target depth reached					<u>16.17m: Ds 20mm</u>				
34	- 18										
33	- 19 										

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

		SAMP	LIN	G & IN SITU TESTING	LEG	END			
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)	_		
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Dougloo Douteoro
BL	K Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test ls(50) (MPa)			1 Douolas Parmers
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	э	⊳	Water seep	S	Standard penetration test		· _	Out the first of Freedom and the Original data to
E	Environmental sa	ample	Ŧ	Water level	V	Shear vane (kPa)			Geotecnnics Environment Groundwater
						· · · /			

SURFACE LEVEL: 52.6 AHD **EASTING:** 337035.3 **NORTHING:** 6245607.6 **DIP/AZIMUTH:** 90°/-- BORE No: BH607 PROJECT No: 72505.18 DATE: 31/8/2020 SHEET 1 OF 2

Γ			Description	Degree of	υ	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
R	De (epth m)	of	Weathening	Lod		Spacing (m)	B - Bedding J - Joint	be	ore 2. %	D 20 %	Test Results
	Ì	,	Strata	T N N N N N N N N N N N N N N N N N N N	U	Kery Very Very Kery	0.01 0.10 0.50	S - Shear F - Fault	Ļ	ပိမ္ရွိ	<u>я</u>	Comments
2	-	0.06 0.25 0.55	ASPHALTIC CONCRETE		þ. (X				E/D E/D			
- 22			roadbase FILL/SAND: fine to medium, pale						E/D			
		1.4	dry, loose						s			7,8,6 N = 14
51-	-	1.4	yellow-brown, moist, loose, aeolian / SAND SC: fine to medium, dark									
-	-2		brown, with clay, loose, moist, aeolian						E/D*			
20-	-								s			1,3,3 N = 6
-	-3							Unless noted otherwise, rock is fractured along rough planar bedding				
49								planes dipping at 0-20°				
-	-4	3.89 3.92	SANDSTONE: medium to coarse grained, pale grey and pale orange, low strength, slightly weathered, clightly fractured. Howkenburg,				<u> </u>	3.89m: CORE LOSS: 30mm 4.21m: B5°, pl, ro, cln				PL(A) = 0.14
48	-		Sandstone					4.58m: B0°, pl, ro, cly vn	с	98	98	
	-5	4.9	SANDSTONE: medium grained, pale grey, low strength, fresh, unbroken, Hawkesbury Sandstone									PL(A) = 0.29
-	-6											PL(A) = 0.22
46	-	6.35	SANDSTONE: medium grained, pale grey, medium strength with high strength bands, fresh,		X			6.27m: CORE LOSS: 80mm				
-	-7		unbroken, Hawkesbury Sandstone						с	98	98	PL(A) = 0.66
45	-						L 	7.41m: Ds 10mm				
	-8											PL(A) = 0.84
44												
-	-9											PL(A) = 0.76
									С	100	98	
-	-											

RIG: Bobcat

CLIENT:

PROJECT:

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

DRILLER: JE

LOGGED: TM

CASING: HQ to 3.89m

TYPE OF BORING: Solid flight auger to 3.8m, Rotary to 3.89m, NMLC Coring to 17.59m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD04/20200831, Bulk samples taken 0.6-1.4m, 1.5-3.8m

	SA	MPLING	G & IN SITU TESTING	G LEG	END						
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_		-	_	_
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						
BI	LK Block sample	U,	Tube sample (x mm dia.)	PL(C) Point load diametral test Is(50) (MPa)		11.				r ners
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			O to a to a to a	1		1 0
E	Environmental sample	e ¥	Water level	V	Shear vane (kPa)			Geotecnnics	I Envir	onment	I Groundwater
						-					

SURFACE LEVEL: 52.6 AHD **EASTING:** 337035.3 **NORTHING:** 6245607.6 **DIP/AZIMUTH:** 90°/-- BORE No: BH607 PROJECT No: 72505.18 DATE: 31/8/2020 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.0</u>	Rock Strength	Fracture	Discontinuities	Sa	amplii	ng & I	In Situ Testing
RL	Depth (m)	of Strata	XW MW SES SS FR SS SS SS SS SS SS SS SS SS SS SS SS SS	Graph Log	Very Low Medium Medium Ex High Ex High	Spacing (m) 5000 0000	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
42	- 11	SANDSTONE: medium grained, pale grey, medium strength with high strength bands, fresh, unbroken, Hawkesbury Sandstone (continued)					10.3m: B5°, pl, ro, cln 10.49m: Ds 40 mm 11.15m: B0°, pl, ro, cly, vn	С	100	98	PL(A) = 0.81 PL(A) = 0.87
41	11.64 12			X			11.58m: CORE LOSS: 60mm				PL(A) = 1.3
40	- 13							С	98	95	PL(A) = 0.5
30	- - - - - - -						13.9m: Ds 110mm 14 46m: Ds 50mm				PL(A) = 1.7
36	- - 15 										PL(A) = 0.3
36	- 16						16.33m: Ds 10mm	С	100	100	PL(A) = 0.94
2	- 17	Between 16.85-17.57: with siltstone clasts					- 17.5m°B0° pl rockyvn				PL(A) = 1.1
-	- 18	Bore discontinued at 17.59m Target depth reached					(
33 34 34	- 19										

RIG: Bobcat

CLIENT:

PROJECT:

Lendlease Building Pty Ltd

LOCATION: High Street and Hospital Road, Randwick

SCH Stage 1 / CCCC Project

DRILLER: JE

LOGGED: TM

CASING: HQ to 3.89m

TYPE OF BORING: Solid flight auger to 3.8m, Rotary to 3.89m, NMLC Coring to 17.59m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD04/20200831, Bulk samples taken 0.6-1.4m, 1.5-3.8m

	SAM	PLIN	G & IN SITU TESTING	LEG	END			
A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)		_	
B	Bulk sample	Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)			Develoo Dortmore
B	LK Block sample	U,	Tube sample (x mm dia.)	PL(I	D) Point load diametral test Is(50) (MPa)	1	1	N Douolas Parliers
C	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)			
D	Disturbed sample	⊳	Water seep	S	Standard penetration test			Or starting I Fraincast I Oran durit
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)			Geotechnics Environment Groundwater
•								

SURFACE LEVEL: 52.9 AHD EASTING: 337054.9 NORTHING: 6245642.4 DIP/AZIMUTH: 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 1 OF 2

Γ			Description	De	egree of	. <u>0</u>	5	Rock Strenath	_	Fracture	Discontinuities	Sa	amplii	ng & l	n Situ Testing
R	Dep (n	oth า)	of		sanonig	Log	N N		Nate	Spacing (m)	B - Bedding J - Joint	be	ore c. %	ac %	Test Results
	Ĺ		Strata	N× N	M N S H	U U	Ver V	High Very Ex H	_	0.01	S - Shear F - Fault	ŕ	йğ	Ж,	Comments
ŧ	F	0.05 0.2				ġ. Ċ				 		E/D			
Ē	Ę	0.5	dark grey, igneous,			0.0						E/D			
È	Ē		FILL/ GRAVEL: medium,			\bigotimes	Ì								
52	- -1		yellow-brown, sandstone, with clay, sand, crushed sandstone, dry			\bigotimes	ļ					E/D*			
Ē	Ę		FILL/SAND: fine to medium, brown,			\bigotimes						s			1,1,1 N = 2
ŧ	Ē	1.5	trace silt, and fine subangular γ igneous gravel, dry			₩¥									
ŀ_	ŀ		SAND SP: fine to medium,				İ				I Inless noted otherwise		-		
ία Γ	2		aeolian				ļ				rock is fractured along	E/D			
ŧ	F										planes dipping at 0-20°				
F	Ę	2.5	SANDSTONE: medium to coarse									s			25/90 refusal
1			grained, pale yellow and red, very low then low strength, highly	i			İ								PL(A) = 0.07
Ē	-3		weathered, slightly fractured, Hawkesbury Sandstone	ļ			i			i ii h ii	2.92m: B5°, un, ro 3.06m: J10-90°, st, ro,				
ł	ļ.									╵╺╪╤┛┓╵╵┊ ╵╴╵╵╴┃╵╵	cln 3.23m: Ds 5mm				
Ē	Ē										^L 3.26m: Ds 40mm				
49	ŧ,			İ			i				5.00m. DS 60mm				$DI(\Lambda) = 0.09$
E	F*						i			; ;; u ;	4.12m: B5°, pl, ro, st		07	70	PL(A) - 0.00
È	È												97	12	
ŧ	F														
48	-5	4.83 5.02		Ī					ľ		4.72m. CORE LOSS. 110mm				
ŧ	E	0.02	SANDSTONE: medium grained, pale grey, low then medium to high								-4.83m: Ds 20mm				$PI(\Lambda) = 0.10$
ŀ	F		strength, fresh, slightly fractured to unbroken. Hawkesbury Sandstone					╎╏┽┓╎╎╎							FL(A) = 0.19
Ē	Ē		, ,	İ			i								
47	-6														PL(A) = 0.91
Ē	Ę														
ŧ	Ē														
-	ŀ			ļ			ļ				6.63m: Ds 60mm				
14	-7									 					PL(A) = 1
ŧ	E										7 31m: CORE LOSS:	с	99	99	
F	E			ļ			İ				20mm 7 33m: Do 10mm				
12	Ē														
ľ	-8														PL(A) = 0.81
Ē	Ę														
Ē	Ē			ļ	i i i i		i								
44	-			+		::::: :::::	-			╞╼┿╼┿┦╋	8.85m: CORE LOSS:				DL(A) = 0.07
Ē	Ę										30mm				PL(A) = 0.97
ŧ	Ę											c	99	99	
ŧ	F														
43	:														

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

A Auger sample G Gas sample PID Photo ionisation detector (ppm)	_
B Bulk sample P Piston sample PL(A) Point load axial test Is(50) (MPa)	HT HO HO
BLK Block sample U, Tube sample (x mm dia.) PL(D) Point load diametral test Is(50) (MPa)	rhers
C Core drilling W Water sample pp Pocket penetrometer (kPa)	
D Disturbed sample D Water seep S Standard penetration test	
E Environmental sample 📱 Water level V Shear varie (kPa) 🖉 Geolecnnics Environment	Groundwater

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 NORTHING: 6245642.4 **DIP/AZIMUTH:** 90°/--

BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 2 OF 2

Γ		Description	Degree of Weathering	<u>.</u> 0	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng &	In Situ Testing
R	Uepth (m)	of Strata	××±××××××××××××××××××××××××××××××××××	Graph Log	Very Low Very Low Medium High Ex High	Age (m) [30:00 [30:00] [30:00	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
		SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone (continued)					11.12m: B0°, pl, ro, cln	С	99	99	PL(A) = 1
	- 11.89 - 12 						11.83m: CORE LOSS: 60mm 12.14m: B0°, pl, ro, cln				PL(A) = 1.2
	- - 13 						12.89m: B0°, pl, ro, cly vn 13.48m: B0°, pl, ro, cly	с	98	98	PL(A) = 0.83
	- 14 - 14 						vn				PL(A) = 0.75
38	- 15 						15.13m: Ds 30mm 15.45m: Ds 10mm	с	100	98	PL(A) = 1.1 PL(A) = 0.15
	- 16 - 16 - 16.33	Dava discontinued at 10 20m					15.98m: B0-10°, un, sm				PL(A) = 1.2
	- - - - - - - - - - - - - - - - - - -	Target depth reached									
35	- - 18 - - -										
	- - - - - - - - - - - - - - - - - - -										

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

	5	SAMPL	INC	3 & IN SITU TESTING	LEG	END										
A	Auger sample		G	Gas sample	PID	Photo ionisation detector (ppm)		_	_	_	-				_	
В	Bulk sample		Р	Piston sample	PL(A	A) Point load axial test Is(50) (MPa)					, /	00				MO
BLł	K Block sample		U,	Tube sample (x mm dia.)	PL(E	D) Point load diametral test Is(50) (MPa)						15				
C	Core drilling		Ŵ	Water sample	pp	Pocket penetrometer (kPa)					/=		-			
D	Disturbed sample		⊳	Water seep	S	Standard penetration test		11		O to . to . i .	1	—			0	
E	Environmental sam	nple	Ŧ	Water level	V	Shear vane (kPa)				Geotecnnics	1	Enviro	onme	ent I	Grouna	water
-							-									

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55 AHD **EASTING:** 337097.5 **NORTHING:** 6245571.8 **DIP/AZIMI ITH:** 90°/-- BORE No: BH602 PROJECT No: 72505.18 DATE: 19 & 24/08/2020 SHEET 1 OF 1

_			Г							
			Description	.cj		San	npling 8	& In Situ Testing	L .	Well
님	De (r	epth	of	aph -og	e	ţ	ple	Poculte &	Vate	Construction
	(i	,	Strata	5	Typ	Dep	Sam	Comments	5	Details
8		0.09	- ASPHALTIC CONCRETE			0.1	05			Gatic cover
<u> </u>		0.28	□ FILL/ROADBASE: Sandy GRAVEL sub-angular fine	p. U rititi	E	0.3				
 			igneous gravel, grey, medium, moist		E/D	0.4				Grout 0.0-1.0m
ļ		0.7	FILL/SAND: fine to medium, dark brown, with silt, moist	<u> </u>		0.6				
F, F			SAND SP: fine to medium, pale grey, moist, aeolian		E/D	10.8				
- 20	- 1					1.0				
EE										Bentonite 1.0-1.5m
t t										Blank pipe
t t										
- 3	-2					2.0				
 		2.2			s			4,3,5		
ļ			SAND SP: fine to medium, orange-brown, apparently cemented iron indurated ("coffee rock") aeolian			245		N = 8		
FF		2.6				2.5				screen 1.5-3.34m
FF			SAND SP: fine to medium, yellow-brown, moist, aeolian			2.6				
-23	-3					3.0		5 25/125		
EE		3.2	- Below 3.1m: becoming wet		S	3.27		refusal		
1		3.35	SANDSTONE: medium grained, pale yellow-brown,	[<u></u>						End cap
 			Sandstone							-
 			Bore discontinued at 3.35m							
-20	-4		Target depth reached							- 4
FF										-
EE										
E										-
6	-5									- 5
t T										
 										-
ļ ļ										-
FF										-
-4	-6									-6
EE										
E										-
ŁŁ										-
t t										-
- 4	-7									-7
 										-
FF										-
FF										-
E										
[7	-0									
ŀ										-
t t										-
 										-
49	-9									-9
F F										
FF										
[]										
[]										
ГĮ										

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH
 CASING:
 None

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.5m, Solid flight auger to 3.35m
 WATER OBSERVATIONS:
 No free groundwater observed whilst augering

REMARKS: Bulk sample taken at 0.7-1.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121809 installed in well

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD **EASTING:** 337109.8 **NORTHING:** 6245649.5 **DIP/AZIMUTH:** 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 1 OF 2

\square		Description	. <u>u</u>		San	npling &	& In Situ Testing		Well
뉟	Depth (m)	of	aphi Log	e	oth	ple	Results &	Vater	Construction
	()	Strata	ō	Ţ	Dep	Sam	Comments		Details
:	0.11	ASPHALTIC CONCRETE	ö. Ö.	E/D	0.1				Gatic cover
22	. 0.24 . 0.6	FILL/ROADBASE: Sandy GRAVEL, sub-angular, fine igneous gravel, grey, medium, moist		E*/D	0.3 0.4 0.5				
	- 1	FILL/Gravelly SAND: medium, brown, subangular, fine igneous gravel, moist Between 0.4-0.55m: large brick fragment	\bigotimes	E/D	0.9				
54	1.35 1.5	FILL/SAND: fine to medium, brown, trace subrounded, fine to coarse sandstone gravel, silt, and glass fragment, moist			1.1 1.4 1.5				Backfill 0.0-2.3m
t I		SAND SP: fine to medium, pale grey, moist, aeolian	1. 1.		1.6				
	-2	Clayey SAND SC: fine to medium, orange-brown, low plasticity, moist, loose, residual			2.0		1.3.2		
-23		Below 2.2m: with ironstone bands	1. 1.	5	2.45		N = 5		
	- 2.5 -	Sandy CLAY CI: low to medium plasticity, pale grey, w~PL, residual (Extremely weathered sandstone)			2.43 2.5 2.6				Bentonite 2.3-3.3m
Ē	-3			S	3.0		7,25/30		3
52	- 3.18 - -	SANDSTONE: medium to coarse grained, pale grey and red-brown, low to high strength, moderately and highly weathered, slightly fractured to unbroken, Hawkesbury		0	3.18 3.3		refusal PL(A) = 0.23		2000
	- - - 4	Sandstone							Blank pipe
51 - 1	• • •				4.2		PL(A) = 0.94		
	• • •			С					
	-5 4.94				5.0		PL(A) = 1.3		
-22									
49	5.75 -6	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone			5.84 6.0		PL(A) = 0.76		
48	-7			С	7.0		PL(A) = 0.84		
47	- 8				8.0		PL(A) = 0.84		8 5 5 5 5 5 5 5 5 5 5 5 5 5
46	- 9				8.85 9.0		PL(A) = 1.3		
	- - - -				10.0_		PL(A) = 1.3		Gravel 3.3-3.8m

 RIG: Vac Truck, Hand Tools & Bobcat
 DRILLER: VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

 REMARKS:
 *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119606 installed in well

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

SURFACE LEVEL: 55.3 AHD EASTING: 337109.8 NORTHING: 6245649.5 DIP/AZIMUTH: 90°/-- BORE No: BH605 PROJECT No: 72505.18 DATE: 19 & 25/08/2020 SHEET 2 OF 2

		Description	0		San	npling &	& In Situ Testing		Well	
R	Depth	of	aphic		Ę		Desults 9	/ater	Construction	n
	(11)	Strata	5	ן אַ ק	Dep	Saml	Comments	5	Details	
44 45 45	- 11	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i> SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone SANDSTONE: medium grained, pale grey, high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i> Between 10.7-12.17: cross bedded at 0-10°		с	11.0		PL(A) = 1.6		Slotted PVC	
43	- 12				- 11.81 12.0		PL(A) = 2		- 12	
42	- 13			с	13.0		PL(A) = 1.4		- 13	00000000000000000000000000000000000000
41	- 14	Between 13.9-15.4m: cross bedded at 0-10°			14.0		PL(A) = 1.4		- 14	
40	- 15 			С	15.0		PL(A) = 2		- 15	00000000000000000000000000000000000000
-	- 16 - 16 28				16.0		PL(A) = 2.2		- 16 - 	000 000 000 000
36 37 37 38 37 38	- 16.28	Bore discontinued at 16.28m Target depth reached							- 17 - 17 - 18 - 18	

 RIG:
 Vac Truck, Hand Tools & Bobcat
 DRILLER:
 VAC Group
 LOGGED:
 KR/JJH/TM
 CASING:
 HQ to 3.1m

 TYPE OF BORING:
 Diatube to 0.1m, Non-Destructive-Drilling (NDD) and Hand-Auger to 1.8m, Solid flight auger to 3.18m, NMLC Coring to 16.28m

 WATER OBSERVATIONS:
 Water seepage at 3.1m

 REMARKS:
 *Field replicate sampleBD1/20200819, Bulk samples taken 0.4-1.0m & 1.5-1.8m, Groundwater well installed, refer to Well Log for

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 1 OF 2

$\left[\right]$	_		Description	jc		San	npling &	& In Situ Testing	<u> </u>	Well
ᆋ	Dept (m)	h	of	Log	/pe	spth	nple	Results &	Wate	Construction
	0	06	Strata	0	ŕ	ă	Sar	Comments		Details
- 22	(0.2		j.º.		0.1				Grout 0.0-1.0m Bentonite
	. (0.6	igneous, subangular-subrounded, dry, roadbase		E/D*	0.4 0.5				0.15-0.35m Blank pipe
			FILL/ GRAVEL: medium, yellow-brown, sandstone, with clay, sand, crushed sandstone, dry		F/D	0.8				
51	- 1		FILL/ SAND: fine to medium, pale grey, dry			1.0		3,4,4		
		1.4	SAND SP: find to modium brown dry loose applian			1.45		N = 8		
			SAND SF. The to medium, brown, dry, loose, aeolian							
	-2		Below 1.8m: moist		E/D	1.9				screen 0.5-3.0m
-20					•]					
Ē			Below 2.5m [.] medium dense			2.5				
					S			5,7,9 N = 16		
-6	-3	3.1	SANDSTONE: modium to source grained			2.95				-3 End cap
			yellow-brown, very low to low strength, Hawkesbury							
	:	3.6	SANDSTONE: medium to coarse grained, pale grey		: : :	3.6		PL(A) = 0.14		Bentonite 3.0-4.0m
	- 4		with some pale orange staining, low then medium strength. slightly weathered. slightly fractured.		•	4.0		PL(A) = 0.23		-4
48			Hawkesbury Sandstone		•					
					•					
					С					
-4-	-5					5.1		PL(A) = 0.61		5
						5.8				
-9	-6	<u>م</u>				6.0		PL(A) = 0.68		
	0.	.25	SANDSTONE: medium grained, pale grey, medium strength fresh slightly fractured to unbroken		•					
			Hawkesbury Sandstone							
E	-7					7.0		PL(A) = 0.46		7
-4					с					
Ē										
4	- 8					8.0		PL(A) = 0.76		-8
ţ										
Ę	- 0					8.8				Į
43	3					9.0		F L(A) = 0.00		
F					с					
Ē										
Ŀ					:	_10.0_		PL(A) = 0.52		

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

SURFACE LEVEL: 52.1 AHD EASTING: 337045.4 NORTHING: 6245584.9 DIP/AZIMUTH: 90°/-- BORE No: BH606 PROJECT No: 72505.18 DATE: 28 - 31/8/2020 SHEET 2 OF 2

Γ		Description	jc		Sam	npling 8	& In Situ Testing	_	Well	
뉟	Depth (m)	of	Sraph Log	ype	epth	mple	Results &	Wate	Construction	n
		Strata		f	ă	Saı	Comments		Details	
41 42	- 11	SANDSTONE: medium grained, pale grey, medium strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>		С	11.0		PL(A) = 0.45		- Backhil 4.0-16.19m	-
40	- 12				11.8		PL(A) = 0.88		- 12	
39	- 13			С	13.0		PL(A) = 1		- 13	
38	- 14 - 14 				14.0 • 14.8		PL(A) = 0.72		- 14	
37	- 15			с	15.0		PL(A) = 0.64		15	
36	- 16.19 	Bore discontinued at 16.19m Target depth reached			16.05 -16.19-		PL(A) = 0.08			
35	- 17 - - - - - -								- 17	
34	- 18 								- 18	
33	- 19 - 19 								- 19	

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 3.2m, HQ to 3.6m

TYPE OF BORING: Diacore to 0.06m, Solid flight auger to 3.2m, Rotary to 3.6m, NMLC Coring to 16.19m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sampleBD03/20200828, Bulk samples taken 0.6-1.0m & 1.5-3.0m, Groundwater well installed, refer to Well Log for construction details, Data logger 2121808 installed in well

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 **NORTHING:** 6245642.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 1 OF 2

	_		Description	jc		Sam	npling a	& In Situ Testing	_	Well	
묍	Dept (m)	th)	of	Srapt Log	ype	epth	mple	Results &	Wate	Construction	ı
	0	05	Strata	0	ŕ		Sai	Comments		Details Gatic cover	
	- (-	0.2	FILL/ROADBASE: GRAVEL, coarse, dark grey,		E/D	0.1				Grout 0.0-1.0m	
-	- (- -	0.5	FILL/ GRAVEL: medium, yellow-brown, sandstone, with		E/D	0.5				-	
52	- 1		clay, sand, crushed sandstone, dry FILL/SAND: fine to medium, brown, trace silt, and fine		E/D*	1.0				Backfill 0.1-1.75m ── - 1	-88
	-		subangular igneous gravel, dry		s	4.45		1,1,1 N = 2		-	
-	- '	1.5	SAND SP: fine to medium, yellow-brown, with clay,			1.45				-	
51	- - -2				E/D	1.8 2.0				-2	
-	-									Bentonite -	-00
Ē		2.5	SANDSTONE: medium to coarse grained, pale yellow		s	2.5 2.59		25/90 refusal			
50	- - - 3		and red, very low then low strength, highly weathered, slightly fractured, Hawkesbury Sandstone			2.75		PL(A) = 0.07		- 	
-	-				•					0.1-2.75m	
-	-									-	
49	-					10		DI(A) = 0.00			
Ē	- 4				с	4.0		PL(A) - 0.06			
	-									-	
48	4.	.83		\geq						-	
-	-55. -	.02	SANDSTONE: medium grained, pale grey, low then		-					- 5	
-	- -		unbroken, Hawkesbury Sandstone			5.3		PL(A) = 0.19		-	
	-					5.76				-	
4	-6				•	6.0		PL(A) = 0.91		-6	
	-				•					-	
-	-									-	
46	- 7					7.0		PL(A) = 1		-7	000
-	-				С					-	
-	-									-	
45	- 8					8.0		PL(A) = 0.81		- 8	
	-									- - -	000
	-									- - -	000
44	- 9					8.85 9.0		PL(A) = 0.97		-9	
E	-										0000
	-				C					Gravel 0.5-3.0m	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -
43	-					10.0		PL(A) = 1		- screen 0.5-3.0m -	200 1111 1111

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

SURFACE LEVEL: 52.9 AHD **EASTING:** 337054.9 **NORTHING:** 6245642.4 **DIP/AZIMUTH:** 90°/-- BORE No: BH608 PROJECT No: 72505.18 DATE: 27 - 28/8/2020 SHEET 2 OF 2

		Description	ic		Sam	pling &	& In Situ Testing	_	Well	
R	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details	
42		SANDSTONE: medium grained, pale grey, low then medium to high strength, fresh, slightly fractured to unbroken, Hawkesbury Sandstone <i>(continued)</i>		С					-11	20000000000000000000000000000000000000
41	- '' - - - - - - - - - - - - - - - - - -				11.1		PL(A) = 1.1			00000000000000000000000000000000000000
	- 12 - - - - - -				12.0		PL(A) = 1.2		-12	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
40	- 13			С	13.0		PL(A) = 0.83		-13	11111111111111111111111111111111111111
	- 14 - 14 				14.0		PL(A) = 0.75		- 14	00000000000000000000000000000000000000
38	- - 15 - - - -			с	15.0 15.2		PL(A) = 1.1 PL(A) = 0.15		-15	0,00,00,00,00,00,00,00,00,00,00,00,00,0
37	- 16 - 16 - 16.33	Bore discontinued at 16.33m			16.0 -16.33-		PL(A) = 1.2		16 End cap	
36	- 17 - 17 	raiget deptimeathed							-17	
35	- 18								- 18	
34	- 19 - 19 								- 19	

RIG: Bobcat

CLIENT:

PROJECT:

LOCATION:

Lendlease Building Pty Ltd

SCH Stage 1 / CCCC Project

High Street and Hospital Road, Randwick

DRILLER: JE

LOGGED: TM

CASING: HW to 2.6m, HQ to 2.75m

TYPE OF BORING: Diacore to 0.05m, Solid flight auger to 2.5m, Rotary to 2.75m, NMLC Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: *Field replicate sample BD02/20200827, Bulk samples taken 0.5-1.5m & 1.5-2.5m, Groundwater well installed, refer to Well Log for construction details, Data logger 2119607 installed in well

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 54.5 AHD **EASTING:** 337116 **NORTHING:** 6245624 PIT No: TP601 PROJECT No: 72505.19 DATE: 2/9/2020 SHEET 1 OF 1

		Description	. <u>0</u>		Sam	npling &	& In Situ Testing					
님	Depth (m)	of	aph Log	e	oth	ple	Results &	Vate	Dynam	ic Penetro (blows per	ometer Te r mm)	est
	(,	Strata	0	Typ	Dep	Sam	Comments	>	5	10	15 20	
F	-	FILL/Silty SAND: fine to medium, brown, with rootlets,	\bigotimes	A/E	0.1		PID < 1 ppm		-			
F*	- 0.4	TOOLS, trace clay, moist	\bigotimes		0.3							
F		to medium sandstone gravel, moist	\otimes	A/E	0.6		PID < 1 ppm					
ŧ	-		\mathbb{X}		0.8							
Ē	-		\bigotimes	A/E	1.0		PID < 1 ppm					
Ē			\mathbb{X}									
Ľ	- 1.6	Clayey SAND SC: fine to medium, pale yellow-brown,										
Ē	- 1.8	moist, aeolian	1/ 1/									
F	-	Pit discontinued at 1.8m Target depth reached										
Ē	-								Ē			
Ľ	-											
Ē	-											
ŧ												
Ē												
Ē	-								-			
Ē	4								4			
ŧ	-											
E R											÷ ÷	
F	-											
Ē	- 5								-5			
ŧ	-											
- 9										i	:	
F	-										1	
Ē	-6								-6			
ŧ	-									-		
-9												
Ē	-											
Ē	-7								-7			
ŧ	-											
-5												
F	-											
Ē	-8								-8			
ŧ	È											
- ⁶	Ę										: :	
ŧ	È								ŧ		: :	
Ē	-9								-9			
ŧ	ŀ											
4	Ę											
ŧ	-									-		
F	F								F		-	

RIG: Vac Truck, Hand Tools

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are approximate based on visual feautes. Levels approximated from nearby boreholes (BH600 series)

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 54.5 AHD **EASTING:** 337114 **NORTHING:** 6245613 PIT No: TP602 PROJECT No: 72505.19 DATE: 2/9/2020 SHEET 1 OF 1

		Description	. <u>u</u>		Sam	pling 8	& In Situ Testing				
님	Depth (m)	of	aph Log	e	oth	ple	Results &	Vater	Dynamic (bl	Penetror ows per r	neter Test mm)
	(,	Strata	Ō	Tyi	Dep	Sam	Comments	>	5	10 1	5 20
F	-	FILL/Silty SAND: fine to medium, brown, with rootlets,	\bigotimes	A/E	0.1		PID < 1 ppm				
-4	- 0.4	FILL (SAND: fine to medium, pale brown, with fine to	\bigotimes		0.3						
- °	-	medium sandstone gravel, trace silt and rootlets, moist	\bigotimes		0.7		PID < 1 ppm				
Ē	-		\bigotimes	AVE	0.9						
ŧ			\bigotimes	A/E	1.1		PID < 1 ppm				
-8	- 1.3	Pit discontinued at 1.3m			-1.3-						
Ē		l est location abandoned due to possible service									
Ę	-2								-2		
Ē											
-23	-										
Ē									Ē		
ŧ	-3								-3		
Ē	[[
-12	-								Ē		
ŧ	-									: ;	
Ē	-4								4		
ŧ	-										
-8	[
Ē	-									:	
ŧ	-5								-5		
Ē									Ē		
-4	-								F i		
Ē	-								[
ŧ	-6 [-6		, ,
ł.	-										
14	-										
ŧ	-								7		
Ē	Ę								Ē'		
Ē	- E								ŧ :		
4	-								-		
Ē	-8										
ŀ	ŀ										
4	Ę								[
Ę	È								ŧ		
ŀ	-9								-9		
Ē	ţ										
45	-										
Ē	Ē								Ē		
Ł	ŀ								ł		

RIG: Vac Truck, Hand Tools

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are approximate based on visual feautes. Levels approximated from nearby boreholes (BH600 series)

Sand Penetrometer AS1289.6.3.3Cone Penetrometer AS1289.6.3.2

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 53.0 AHD **EASTING:** 337110 **NORTHING:** 6245667 PIT No: TP603 PROJECT No: 72505.19 DATE: 3/9/2020 SHEET 1 OF 1

Γ			Description	. <u>0</u>		Sampling & In Situ Testing						
RL	De (1	epth m)	of	raph Log	эс	oth	ple	Results &	Vate	Dynamic (blo	Penetror ows per i	meter Test mm)
		,	Strata	Ū	Ţ	Dep	Sam	Comments	>	5	10 1	5 20
1	E	0.1	ASPHALTIC CONCRETE	· .								
	-	0.3	FILL/Sandy GRAVEL: fine, dark grey, igneous, fine to coarse sand, moist (roadbase)		A/E	0.3 0.5		PID < 1 ppm				
			FILL/SAND: fine to medium, grey-brown, trace fine sandstone and igneous gravel, moist									
- 10		1.1	Clayey SAND SC: medium, orange-brown, moist, aeolian	××, ,,,,,	A/E	1.2		PID < 1 ppm				
-		1.4	Pit discontinued at 1.4m Test location abandoned due to services			-1.4-						
- 13	-2									-2		
ŀ										-		
-33	-3									-3		
ŀ	-											
ŀ												
49	-4									-4		
ŀ	-									-		
ŀ	-											
48	-5									-5		
	-										:	
-												
47	-6									-6		
ŀ	-											
Ē												
46	-7									-7		
ŀ	-											
F	Ę											
45	-8									-8		
ŀ	- - -										•	- • • • • • • • • • • • • • •
Ē	Ē											
44	-9									-9		
Ē										t t		
-	Ļ											

RIG: Vac Truck, Hand Tools

LOGGED: JJH

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are approximate based on visual feautes. Levels approximated from nearby boreholes (BH600 series)

□ Sand Penetrometer AS1289.6.3.3□ Cone Penetrometer AS1289.6.3.2

CLIENT:Lendlease Building Pty LtdPROJECT:SCH Stage 1 / CCCC ProjectLOCATION:High Street and Hospital Road, Randwick

SURFACE LEVEL: 53.0 AHD **EASTING:** 337120 **NORTHING:** 6245665 PIT No: TP604 PROJECT No: 72505.19 DATE: 7/9/2020 SHEET 1 OF 1

		Description	. <u>ಲ</u>		Sam	pling a	ling & In Situ Testing				
R	Depth (m)	of	aph -og	e	Ę	ple	Poculte &	/ater	Dyr	namic Penetro (blows per	meter Test mm)
	(11)	Strata	ତ_ ଜ_	Ţ	Dep	Sam	Comments	5	5	5 10	, 15 20
8	- 0.1	ASPHALTIC CONCRETE			0.0				-		
Ē		FILL/Sandy GRAVEL: fine, dark grey, igneous, fine to coarse sand, moist (roadbase)		_A/E	0.2 0.3 0.4		PID < 1 ppm PID < 1 ppm				
È	- 0.6	At 0.57m: Possible sandstone bedrock exposed at	<u> </u>		-0.5-						
22	-1	Pit discontinued at 0.6m							-1		
Ē	-	Target depth reached									
Ē	E								E		
E	[[
È_	-										
-20	-2								-2		: :
Ē	[[
ŧ	-								-		: :
ŧ	-										
-3	-3								-3		: :
ŧ	-										
F	-								F		
E	[[
49	-4								-4		
Ē	-								E		
E	[[
ŧ	-										
F	-								-		: :
Ę	[["		
ŧ	-										
Ē	Ē								E		: :
Ł	-										
47	-6								-6		
Ē	Ē										
ŧ	-										
ŧ	-										
46	-7								-7		
ł	-										
ŀ	-										
Ē	E								E		
12	-8								-8		: :
È	-										
Ē	Ē								E		
E	E								-		
ŧ.	-								-		
-4	-9								-9		
E	E								[
ŧ	-								ļ -		
ŧ	-								ļ :		
Ľ	t								t		

RIG: Vac Truck, Hand Tools

LOGGED: KR

SURVEY DATUM: MGA94 Zone 56

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: * BD1/20200907 taken. Coordinates are approximate based on visual feautes. Levels approximated from nearby boreholes (BH600 series)

Sand Penetrometer AS1289.6.3.3Cone Penetrometer AS1289.6.3.2

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the insitu soil if it is safe to enter into the pit. The depth of excavation is limited to about 3 m for a backhoe and up to 6 m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 300 mm or larger in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are disturbed and may be mixed with soils from the sides of the hole. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Non-core Rotary Drilling

The borehole is advanced using a rotary bit, with water or drilling mud being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from the rate of penetration. Where drilling mud is used this can mask the cuttings and reliable identification is only possible from separate sampling such as SPTs.

Continuous Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Purposes - Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of, say, 4, 6 and 7 as:

 In the case where the test is discontinued before the full penetration depth, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm as:

15, 30/40 mm

Sampling Methods

The results of the SPT tests can be related empirically to the engineering properties of the soils.

Dynamic Cone Penetrometer Tests / Perth Sand Penetrometer Tests

Dynamic penetrometer tests (DCP or PSP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rod penetrates the soil the number of blows required to penetrate each successive 150 mm depth are recorded. Normally there is a depth limitation of 1.2 m, but this may be extended in certain conditions by the use of extension rods. Two types of penetrometer are commonly used.

- Perth sand penetrometer a 16 mm diameter flat ended rod is driven using a 9 kg hammer dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands and is mainly used in granular soils and filling.
- Cone penetrometer a 16 mm diameter rod with a 20 mm diameter cone end is driven using a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are generally based on Australian Standard AS1726:2017, Geotechnical Site Investigations. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	19 - 63
Medium gravel	6.7 - 19
Fine gravel	2.36 - 6.7
Coarse sand	0.6 - 2.36
Medium sand	0.21 - 0.6
Fine sand	0.075 - 0.21

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

The proportions of secondary constituents of soils are described as follows:

In the grained solis (>35% II	In	oils (>35% fines)	ne grained soils
-------------------------------	----	-------------------	------------------

Term	Proportion	Example
	of sand or	
	gravel	
And	Specify	Clay (60%) and
		Sand (40%)
Adjective	>30%	Sandy Clay
With	15 – 30%	Clay with sand
Trace	0 - 15%	Clay with trace
		sand

In coarse grained soils (>65% coarse)

with	clays	or	silts

Term	Proportion of fines	Example
And	Specify	Sand (70%) and Clay (30%)
Adjective	>12%	Clayey Sand
With	5 - 12%	Sand with clay
Trace	0 - 5%	Sand with trace clay

In coarse grained soils	(>65% coarse)
- with coarser fraction	

Term	Proportion of coarser fraction	Example
And	Specify	Sand (60%) and Gravel (40%)
Adjective	>30%	Gravelly Sand
With	15 - 30%	Sand with gravel
Trace	0 - 15%	Sand with trace gravel

The presence of cobbles and boulders shall be specifically noted by beginning the description with 'Mix of Soil and Cobbles/Boulders' with the word order indicating the dominant first and the proportion of cobbles and boulders described together.

Soil Descriptions

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	F	25 - 50
Stiff	St	50 - 100
Very stiff	VSt	100 - 200
Hard	Н	>200
Friable	Fr	-

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	Density Index (%)
Very loose	VL	<15
Loose	L	15-35
Medium dense	MD	35-65
Dense	D	65-85
Very dense	VD	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Extremely weathered material formed from in-situ weathering of geological formations. Has soil strength but retains the structure or fabric of the parent rock;
- Alluvial soil deposited by streams and rivers;

- Estuarine soil deposited in coastal estuaries;
- Marine soil deposited in a marine environment;
- Lacustrine soil deposited in freshwater lakes;
- Aeolian soil carried and deposited by wind;
- Colluvial soil soil and rock debris transported down slopes by gravity;
- Topsoil mantle of surface soil, often with high levels of organic material.
- Fill any material which has been moved by man.

Moisture Condition – Coarse Grained Soils For coarse grained soils the moisture condition

should be described by appearance and feel using the following terms:

- Dry (D) Non-cohesive and free-running.
- Moist (M) Soil feels cool, darkened in colour.

Soil tends to stick together. Sand forms weak ball but breaks easily.

Wet (W) Soil feels cool, darkened in colour.

Soil tends to stick together, free water forms when handling.

Moisture Condition – Fine Grained Soils

For fine grained soils the assessment of moisture content is relative to their plastic limit or liquid limit, as follows:

- 'Moist, dry of plastic limit' or 'w <PL' (i.e. hard and friable or powdery).
- 'Moist, near plastic limit' or 'w ≈ PL (i.e. soil can be moulded at moisture content approximately equal to the plastic limit).
- 'Moist, wet of plastic limit' or 'w >PL' (i.e. soils usually weakened and free water forms on the hands when handling).
- 'Wet' or 'w ≈LL' (i.e. near the liquid limit).
- 'Wet' or 'w >LL' (i.e. wet of the liquid limit).

Rock Descriptions

Rock Strength

Rock strength is defined by the Unconfined Compressive Strength and it refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects.

The Point Load Strength Index $Is_{(50)}$ is commonly used to provide an estimate of the rock strength and site specific correlations should be developed to allow UCS values to be determined. The point load strength test procedure is described by Australian Standard AS4133.4.1-2007. The terms used to describe rock strength are as follows:

Strength Term	Abbreviation	Unconfined Compressive Strength MPa	Point Load Index * Is ₍₅₀₎ MPa
Very low	VL	0.6 - 2	0.03 - 0.1
Low	L	2 - 6	0.1 - 0.3
Medium	М	6 - 20	0.3 - 1.0
High	Н	20 - 60	1 - 3
Very high	VH	60 - 200	3 - 10
Extremely high	EH	>200	>10

* Assumes a ratio of 20:1 for UCS to $Is_{(50)}$. It should be noted that the UCS to $Is_{(50)}$ ratio varies significantly for different rock types and specific ratios should be determined for each site.

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Residual Soil	RS	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely weathered	XW	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible
Highly weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately weathered	MW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly weathered	SW	Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR	No signs of decomposition or staining.
Note: If HW and MW cannot be differentiated use DW (see below)		
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching or may be decreased due to deposition of weathered products in pores.

Rock Descriptions

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with occasional fragments
Fractured	Core lengths of 30-100 mm with occasional shorter and longer sections
Slightly Fractured	Core lengths of 300 mm or longer with occasional sections of 100-300 mm
Unbroken	Core contains very few fractures

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

RQD % = <u>cumulative length of 'sound' core sections ≥ 100 mm long</u> total drilled length of section being assessed

where 'sound' rock is assessed to be rock of low strength or stronger. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
\bigtriangledown	Water level

Sampling and Testing

- A Auger sample
- B Bulk sample
- D Disturbed sample
- E Environmental sample
- Undisturbed tube sample (50mm)
- W Water sample
- pp Pocket penetrometer (kPa)
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	Lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizontal

21

- v vertical
- sh sub-horizontal
- sv sub-vertical

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

са	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	verv rouah

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

oo	
A. A. A. A A. D. A. A	

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

อบเมอเ

Gneiss

Douglas Partners Geotechnics | Environment | Groundwater

st-t 8:35-

Groundwater Field Sl	heet	
Project and Bore Installation	on Details	
Bore / Standpipe ID:	BH6D8	
Project Name:		
Project Number:	72505.19	
Site Location:		
Bore GPS Co-ord:		
Installation Date:		
GW Level (during drilling):	- m bgl	
Well Depth:	m bgl	
Screened Interval:	m bgl	
Contaminants/Comments:	-	
Bore Development Details		
Date/Time:		
Purged By:		
GW Level (pre-purge):	m bgl	
Observed Well Depth:	m bgl	
PSH observed:	Yes / No (interface / visual). Thickness if observed:	
Estimated Bore Volume:	L	
Total Volume Purged:	(target: no drill mud, min 3 well vol. or dry)	
GW Level (post-purge):	m bgl	
Equipment:		
Micropurge and Sampling I	Details	9.
Date/Time:	8.9.20 8:00 an	C.
Sampled By:	KR	
Weather Conditions:	Sunny	
GW Level (pre-purge):	3.28 mbgl (8:14 m)	
Observed Well Depth:	16·04 m bgl	
PSH observed:	Yes / No (interface / visual). Thickness if observed:	
Estimated Bore Volume:	L S	
GW Level (post sample):	3.43m bgl $2.04 cm - 3.43m$	
Total Volume Purged:		
Equipment:	WIGHEACZ METER	
	Water Quality Parameters NT4	
Time / Volume	Temp (°C) DQ (mg/L) EC (uS or mS/cm) pH Turbidity	

		water Qualit	y rarameters		NIG	
Time / Volume	Temp (°C)	DO (mg/L)	EC (µS or mS/cm)	pН	Turbidity	MV
Stabilisation Criteria (3 readings)	0.1 ° C	+/- 0.3 mg/L	+/- 3%	+/- 0.1	+/- 10%	
1:50 min	20.2	1.93	58325	5.55	1 the	104
2:50	21.3	1.59	495	5.67	67	102
3:50 min	21.5	1.49	491	5.69	H\$ 68	101
4:50 ~~~	21.6	1.49	475	5.70	260	101
5:50 min	21.7	1.41	481	5.70	174	102
6:50 mm	01.7	1.39	409	5.70	267	103
7:50 m	21.7	1.34	2012, 428	5.71	289	106
8:50 ~~	21.7	1.34	461	5.71	300	107
9:50 ~~	21.8	1.35	456	5.71	315	106
Additional Readings Following stabilisation:	DO % Sat	SPC	TDS			
		Sample	Details			

	Sample Details
Sampling Depth (rationale):	$\sim 10.0 \text{ m bgl},$
Sample Appearance (e.g. colour, siltiness, odour):	Clear, slighty cloudy
Sample ID:	
QA/QC Samples:	Puplicali - BD/20200908
Sampling Containers and	
filtration:	
Comments / Observations:	
12	¢
	20/2020 00 00
	(SV) Rev Ma

Douglas Partners Geotechnics | Environment | Groundwater

Bore / Standnine ID:	RL	12				-
Dreiget Name:	705	10				-
Project Number	7230	55.17				
Project Number:						
Site Location:						_
Bore GPS Co-ord:						
Installation Date:						
GW Level (during drilling):	-	m bgl				_
Well Depth:		m bgl				
Screened Interval:		m bgl				
Contaminants/Comments:	-					_
Bore Development Details						_
Date/Time:						_
Purged By:						_
GW Level (pre-purge):		m bgl			-	-
Observed Well Depth:		m bgl				-
PSH observed:	Yes / No (interface / v	isual). Thicknes	s if observed:		
Estimated Bore Volume:		L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-
Total Volume Purged:	(tar	 pet: no drill mu	d. min 3 well vol	or dry)		-
GW Level (nost-nurge).		m bal	, iiiii o won voi			-
Equipment:		m by				-
Micropurge and Sampling D	taile					-
Nicropurge and Sampling D		,	2 6. 20			=
Date/Time:	11-50		8.7.20			
Sampled By:	KR					_
Weather Conditions:	San	g				_
GW Level (pre-purge):	5.88	len bgl				_
Observed Well Depth:	6.54	m bgl				_
PSH observed:	Yes / No (interface / v	isual). Thicknes	s if observed:		
Estimated Bore Volume:		L				
GW Level (post sample):	DRT.	m bgl				
Total Volume Purged:	1 stert ba	Kket				_
					-	
Equipment:						
		Water Qualit	y Parameters			_
Time / Volume	Temp (°C)	DO (mg/L)	EC (uS or mS/cm)	рН	Turbidity	7
Stabilisation Criteria (3 readings)	0.1°C	+/- 0.3 mg/l	+/- 3%	+/- 0 1	+/- 10%	= ~~
	22.8	2.2 A	CZAC	0.5	1	= 04
2:20	25.8	2.04	53445	D'A	170	- 07
5.00 000	61.7	7 31	STI	8.76	77.1	- 82
2.00 ~~~	25.4	4.05	501	8.68	TI	45
7.00 mm	14.3	4.40	571	8.47	2175	109
11.00 mm	238	4.13	STI	8.51	1261	107
						_
- Q2						
Additional Readings Following	DO % Sat	SPC	TDS			
stabilisation:						
		Sample	Details			
Sampling Depth (rationale):	6-400	m bgl,				_
Sample Appearance (e.g.	P.			H.		_
colour, siltiness, odour):	Isko	wn,	Cloudy	then	-	
Sample ID:			0			-
QA/QC Samples:						_
Sampling Containers and						-
filtration:						
16		1	P	1		
Comments / Observations:	12 /2 10	1	kin I.	ha	aket.	A a d
	nare	1 Tal	in Ton	n pa	erer u	sea
			/			

Douglas Partners Geotechnics | Environment | Groundwater

23-9

7 -00

	Groundwater Field She	Groundwater Field Sheet					
2 8 a.	Project and Bore Installation	Details					
	Bore / Standpipe ID:	BHI	3				
	Project Name:						
	Project Number:	7250	5.19				
	Site Location:						
	Bore GPS Co-ord:						
	Installation Date:						
<u> </u>	GW Level (during drilling):	-	m bgl				
	Well Depth:		m bgl				
	Screened Interval:		m bgl			۰	
	Contaminants/Comments:	-					
	Bore Development Details						
	Date/Time:						
	Purged By:						
	GW Level (pre-purge):	m bgl m bgl					
	Observed Well Depth:						
	PSH observed:	Yes / No (interface / visual). Thickness if observed:					
	Estimated Bore Volume:		L				
	Total Volume Purged:	(target: no drill mud, min 3 well vol. or dry) m bgl					
	GW Level (post-purge):						
	Equipment:						
	Micropurge and Sampling De	tails				2	
	Date/Time:	8-9-2	0,	lon			
	Sampled By:	KR					
	Weather Conditions:		Sanny				
	GW Level (pre-purge):	3-36	m bgl 🛛 🚺	(:020:	~		
	Observed Well Depth:	3.80	m bgl	(s:12?)	>		
	PSH observed:	Yes / No (i	nterface / vi	isual). Thickne	ss if observed:		
	Estimated Bore Volume:		L				
	GW Level (post sample):	DRY	m bgl				
	Total Volume Purged:	0.5 st	tel bi	elect			
	Equipment:						
			Water Qualit	v Parameters			
	Time / Volume	Temp (°C) $DO(mg/L) = FC(uS or mS/cm)$ pH T				Turbidity	
	Stabilisation Criteria (3 readings)		+/- 0 3 mg/l	+/- 3%	+/- 0 1	+/- 10%	
011	M.1.2:00	21.0	2.9.5	606	7.77	., 10,0	
74-1	2:00	29.5	2-65	140	6-71		
1:14.~	1'm	25.8	3-58	475	6-43		
· · · · ·	4.00 mm	24.0	1-24	678	6-27		
	J. OD Mil	22-9	1.20	171	1-25		

Redox (~V) 121 ~V 129 ~V 139 149

Additional Readings Following DO % Sat SPC TDS stabilisation: Sample Details Sampling Depth (rationale): m bgl, ellow-brown Sample Appearance (e.g. 19 almost sha V ear colour, siltiness, odour): Sample ID: QA/QC Samples: Sampling Containers and steet bucket used dooing filtration: Dates sample to Datalogger taken Comments / Observations: from ba placed Rev March 2012

673

4-68

6-25

TPS FLT90 CALIBRATION RECORD

Serial Number: 428561 DP Identification No.

Project:

Project Number: 72505.19

PARAMETER	STANDARD	PRE CALIBRATION READING		POST CALIBRATI	ON READING
Temperature	* 23.0		degrees C		degrees C
	10	10	pH units	10.00	pH units
pН	7	7.(pH units	7.00	pH units
	4	3.81	pH units	4-00	pH units
	0.0** uS/cm	D	μS/cm	0	μS/cm
Conductivity	2.76 mS/cm	2.606	mS/cm	2760	mS/cm
	12.88 mS/cm		mS/cm		mS/cm
700	0.0** ppm		ppm		ppm
105	36.0 ppk		ppk		ppk
			ppm		
Dissolved	0.0% sat	-1.7	%	O.	%
Oxygen	100.0**%		ppm		
	sat	112	%	100	%
Turbidity	0*** NTU		NTU		NTU
	90 NTU	00.01	NTU	90	NTU
ORP #	240 mV	201-2	mV		mV

Calibrated by: KDate: $7 \cdot 4 \cdot 20$

Wrong date. Actual date is 7.9.20

* use NATA certified reference thermometer from soils clean lab

- ** air
- *** distilled water

factory calibrated – do a bump test

NOTES:

Form Updated 1 September 2017

Appendix F

Site Assessment Criteria

Site Assessment Criteria

S1. Soil Investigation Levels

S1.1 Health Investigation Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HIL are applicable to assessing health risk arising *via* all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface. Site-specific conditions may determine the depth to which HILs apply for other land uses.

HSL are applicable to selected petroleum compounds and fractions to assess the risk to human health via inhalation and direct contact pathways. HSL have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. Given the proposed land use and based on the CSM the adopted HIL and HSL are:

- HIL-B & HSL-B Residential (hospital)
- HIL-D & HSL D Commercial Industrial (proposed roads)

Health screening levels for the vapour intrusion pathway have been conservatively adopted.

Table S1 shows the HILs that have been adopted by NEPC (2013) Schedule B1, Table 1A(1). Table S1 only includes contaminants to be analysed during the current investigations and contaminants adopted as initial screening indicators, not the full list provided in NEPC (2013).

Contaminant	HIL B (mg/kg)	HIL D (mg/kg)
Metals and Inorganics		
Arsenic	500	3,000
Cadmium	150	900
Chromium (IV)	500	3,600
Copper	30,000	240,000
Lead	1,200	1,500
Mercury (inorganic)	120	730
Nickel	1,200	6,000
Zinc	60,000	400,000
РАН		

Table S1: Health Investigation Levels

Contaminant	HIL B (mg/kg)	HIL D (mg/kg)
Carcinogenic PAH (as benzo(a)pyrene TEQ) ¹	4	40
Total PAH	400	4,000
Phenols		
Pentachlorophenol (used as an initial screen)	130	660
OCP		
DDT + DDD + DDE	600	3,600
Aldrin + Dieldrin	10	45
Chlordane	90	530
Endosulfan (total)	400	2,000
Endrin	20	100
Hepatchlor	10	50
НСВ	15	80
Methoxychlor	500	2,500
Other Pesticides		
Chlorpyrifos	340	2,000
Other Organics		
PCB ²	1	7

Notes:

1 Sum of carcinogenic PAH.

2 Non dioxin-like PCBs only.

Table S2 shows petroleum hydrocarbon compounds adopted from NEPC (2013) Schedule B1, Table 1A(3). The HSLs are based on overlying soil type and depth. Vapour intrusion HSLs for sand) have been used based on the fill encountered at the site (refer to borehole logs, Appendix E). Given the general depth of fill encountered in the investigation during the intrusive works, and using the most conservative values, the depth range of 0 m to <1 m has been used.

Contaminant	Soil Type	HSL A & B – Vapour Intrusion (mg/kg)	HSL D – Vapour Intrusion (mg/kg)
		Depth 0 m to <1m	Depth 0 m to <1m
Toluene		160	NL
Ethylbenzene		55	NL
Xylenes		40	NL
Naphthalene	Sand	3	NL
Benzene		0.5	3
TRH C6-C10 less BTEX [F1]		40	260
TRH >C ₁₀ -C ₁₆ less naphthalene [F2]		230	NL

Table S2: Soil Health Screening Levels for Vapour Intrusion

Notes: NL Not limiting

Direct contact HSL have been adopted from the CRC Care Technical Report No. 10 (Friebel and Nadebaum 2019) and are summarised in below Table S3.

Contaminant	HSL B – Direct Contact (mg/kg)	HSL D – Direct Contact (mg/kg)
Toluene	21,000	99,000
Ethylbenzene	5,900	27,000
Xylenes	17,000	81,000
Naphthalene	2,200	11,000
Benzene	140	430
$C_{6} - C_{10}$	5,600	26,000
C10-C16	4,200	20,000
C ₁₆ -C ₃₄	5,800	27,000
C34-C40	8,100	38,000

Table S3	Soil Health	Screening	l evels f	or Direct	Contact
Table 33.	Son near	Screening	LEVEISI		Contact

S1.2 Ecological Investigation and Screening Levels

Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 2 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g., motor vehicle emissions). The ACL is the added concentration (above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL

The ABC is determined through direct measurement at an appropriate reference site (preferred) or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EIL (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An Interactive (Excel) Calculation Spreadsheet may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the NEPC website (http://www.nepc.gov.au/nepms/assessment-site-contamination/toolbox).

The adopted EIL, derived from the *Interactive (Excel) Calculation Spreadsheet* are shown in the following Table S4. The following site specific data and assumptions have been used to determine the EILs:

- The EILs will apply to the top 2 m of the soil profile;
- Given the likely source of soil contaminants (i.e., historical site use/fill) the contamination is considered as "aged" (>2 years); and
- ABCs have been derived using the *Interactive (Excel) Calculation Spreadsheet* using input parameters of aged soil, CEC of 2.1 cmol_c/kg and pH of 6.1 with high traffic and clay content of 15%

	Analyte	EIL (Urban residential and public open space)	EIL (Commercial Industrial)	Comments
Metals	Arsenic	100	160	
	Chromium III	470	770	
	Copper	65	80	Adopted averaged pH of 6.1 and CEC
	Lead	1,100	1800	of 2.1 cmol _c /kg based on current and
	Nickel	9	10	content 1% (refer to borehole logs,
	Zinc	240	300	Appendix E), high traffic area (NSW).
PAH	Naphthalene	170	370	
OCP	DDT	180	640	

Table S4: Ecological Investigation Levels (EIL) in mg/kg

Ecological Screening Levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. ESL apply to the top 2 m of the soil profile as for EIL.

ESL have been derived in NEPC (2013) for petroleum fractions F1 to F4 as well as BTEX and Benzo(a)pyrene. Site specific data and assumptions as summarised in Table S5 have been used to determine the ESL. The adopted ESL, from Table 1B(6), Schedule B1 of NEPC (2013) are shown in Table S6.

Table S5:	Inputs	to the	Derivation	of	ESL
-----------	--------	--------	------------	----	-----

Variable	Input	Rationale
Depth of ESL application	Top 2 m of the soil profile	The top 0 - 1 m depth below ground level corresponds to the root zone and habitation zone of many species.
Land use	Commercial / Industrial	Site is proposed/used for a road, loading docks and associated infrastructure for the adjacent hospital
Soil Texture	Coarse	Based on findings noted in the borehole logs (refer to Appendix E).

	Analyte	ESL (urban residential and public open space)	ESL (commercial and industrial)	Comments
TRH	C6 – C10 (less BTEX) [F1]	180*	215*	
	>C10-C16 (less Naphthalene) [F2]	120*	170*	
	>C16-C34 [F3]	300	1,700	All ESLs are low
	>C34-C40 [F4]	2,800	3,300	reliability apart from
BTEX	Benzene	50	75	those marked with *
	Toluene	85	135	reliability
	Ethylbenzene	70	165	
	Xylenes	105	180	
PAH	Benzo(a)pyrene	0.7	1.4	

Table S6: Ecological Screening Levels (ESL) in mg/kg

In addition, given the low reliability of the benzo(a)pyrene ESL in NEPC (2013) reference has been made to Table 11 of the CRC Care Technical Report No.39 *Risk-Based Remediation Guidance for Benzo(a)pyrene* March 2017 (CRC, 2017). CRC (2017) indicates a high reliability ecological guideline for fresh B(a)P of 33 mg/kg (and 95% confidence interval range of 21 mg/kg to 135 mg/kg) for urban residential and public open space.

S1.3 Management Limits

NEPC (2013) Table 1B(7) provides 'management limits' for TRH fractions, which are applied after consideration of relevant HSLs. The management limits have been adopted to avoid or minimise the following potential effects of petroleum hydrocarbons:

- Formation of non-aqueous phase liquids (NAPL);
- Fire and explosive hazards; and
- Effects on buried infrastructure e.g., penetration of, or damage to, in-ground services by hydrocarbons.

The presence of site TRH contamination at the levels of the management limits does not imply that there is no need for administrative notification or controls in accordance with jurisdictional requirements. The adopted management limits are presented in Table S7 based upon the CSM and encountered subsurface conditions. Coarse texture management limits have been adopted based on findings noted in the borehole logs (refer to Appendix E).

TRH Fraction	Soil Texture	Management Limits (residential, parkland and public open space)	Management Limits (commercial and industrial)
C ₆ -C ₁₀ [F1]	Coarse	700	700
>C10-C16 [F2]	Coarse	1,000	1,000
>C16-C34 [F3]	Coarse	2,500	3,500
>C34-C40 [F4]	Coarse	10,000	10,000

Table S7: Management Limits for TRH Fractions in Soil in mg/kg

S1.4 Asbestos in Soil

Bonded asbestos-containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing fill on vacant land and development sites;
- Commonly occurring in historical fill containing unsorted demolition materials; and
- Importation of asbestos contaminated building products from China.

Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and / or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

NEPC (2013) Table 7 provides health screening levels for asbestos in soil which are based on scenariospecific likely exposure levels, adopted from the WA DoH (2007) guidelines, summarised below in Table S8.

Form of asbestos	Health Screening Level (Residential B)	Health Screening Level (Commercial/Industrial D)			
Bonded ACM	0.04 %	0.05 %			
FA and AF	0.001 %				
All forms of asbestos	No visible asbestos for surface soil				

Table S8: Health screening levels for asbestos in soil (w/w %)

The SAC to be adopted for the assessment of asbestos in the current investigation is no asbestos detected at the laboratory reporting limit of 0.1 g/kg as an initial screen given the adopted sampling techniques (boreholes and limited access NDD test pits).

S1.5 Groundwater

The potential receptors of impacted groundwater from the site include:

- Workers conducting excavations, construction or maintenance works within the site or nearby the site; and
- Receiving down-gradient groundwater body (freshwater)

S1.5.1 Groundwater Investigation Levels

Groundwater investigation levels (GIL) adopted in NEPC (2013) are based on the ANZECC & ARMCANZ (2000) water quality guidelines, however, it is noted that the ANZECC & ARMCANZ (2000) guidelines have since been superseded by the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZG 2018). Accordingly, groundwater analytical results have been assessed against the ANZG (2018) guidelines for this investigation. The 95% Level of Protection (LOP) has been adopted with the exception of contaminants with the potential to bioaccumulate, which have been assessed with reference to the 99% LOP.

The adopted GIL for the analytes included in the assessment (where applicable), and the corresponding source documents, are shown in Table S9 below.

Quality	GIL, Marine Waters (mg/L)
Contaminant	ANZG (2018)
Metals	
Arsenic (III/IV)	24/42
Cadmium	0.2
Chromium (III/IV)	3.3/1
Copper	1.4
Lead	3.4
Mercury (inorganic)	0.06
Nickel	11
Zinc	8
BTEX	
Benzene	950
Toluene	180
Ethylbenzene	80
m- / p-Xylene	75 / 200
o Xylene	350
РАН	
benzo(a)pyrene	0.0001
naphthalene	0.016
Phenols	
Pentachlorophenol (used as an initial screen)	0.0036
OCP	0.000001
Aldrin (used as an initial screen)	0.000001
OPP	
Chlorpyrifos(used as an initial screen)	0.00001
Other Organics	
PCB (Aroclor 1242 as conservative screen)	0.0003
voc	
1,1,2-Trichloroethane	0.0065
1,2,3-Trichlorobenzene	0.003
1,2,4-Trichlorobenzene	0.085
1,2-Dichlorobenzene	0.16
1,4-Dichlorobenzene	0.06

Table S9: Groundwater Investigation Levels

The generic groundwater HSL for vapour intrusion are published in NEPC (2013). Table S9 summarises the adopted HSL along with the relevant assumptions used in selecting the appropriate limits.

Analyte	HSL A & HSL B	HSL D	Comments
Toluene	NL	NL	Depth of groundwater encountered
Ethylbenzene	NL	NL	2 - 4 m
Xylenes	NL	NL	Sand chosen as the most conservative value given variability
Naphthalene	NL	NL	of fill encountered
Benzene	0.8	5	
C6-C10 [F1]	1	6	
>C10-C16 [F2]	1	NL	

Table S10: Groundwater HSL for Vapour Intrusion (mg/L)

Appendix G

Laboratory Documentation

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 232763

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Amelia Dani, Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>72505.16, POWH</u>
Number of Samples	68 Soil, 1 Water
Date samples received	10/12/2019
Date completed instructions received	11/12/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by12/12/2019Date of Issue12/12/2019NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Panika Wongchanda, Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Senior Asbestos Analyst Nick Sarlamis, Inorganics Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		232763-2	232763-7	232763-8	232763-10	232763-12
Your Reference	UNITS	S2-TP14	S2-TP18	S2-TP19	S2-TP20	S2-TP21
Depth		0-0.2	0.3-0.5	0.2	0-0.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	94	101	98	95	96
		000700.40	000700.00	000700.01	000700.00	000700.04

Our Reference		232763-19	232763-20	232763-21	232763-22	232763-24
Your Reference	UNITS	S2-TP24	S2-TP25	S2-TP25	S2-TP26	S2-TP27
Depth		0.5-0.7	0-0.2	0.3-0.5	0-0.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	106	108	106	100

vTRH(C6-C10)/BTEXN in Soil	vTRH(C6-C10)/BTEXN in Soil							
Our Reference		232763-32	232763-36	232763-38	232763-42	232763-46		
Your Reference	UNITS	S2-TP10	S2-TP12	S2-TP13	S2-TP2	S2-TP3		
Depth		0-0.1	0.0-0.2	0.5-0.7	0-0.1	0.4-0.5		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019		
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019		
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25		
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25		
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1		
m+p-xylene	mg/kg	<2	<2	<2	<2	<2		
o-Xylene	mg/kg	<1	<1	<1	<1	<1		
naphthalene	mg/kg	<1	<1	<1	<1	<1		
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3		
Surrogate aaa-Trifluorotoluene	%	96	108	106	115	109		

VIRH(C6-C10)/BIEXN IN SOIL				
Our Reference		232763-49	232763-50	232763-53
Your Reference	UNITS	TS	ТВ	S2-TP6
Depth			•	0.9-1.0
Type of sample		Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019
TRH C ₆ - C ₉	mg/kg	[NA]	[NA]	<25
TRH C ₆ - C ₁₀	mg/kg	[NA]	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	[NA]	[NA]	<25
Benzene	mg/kg	100%	<0.2	<0.2
Toluene	mg/kg	100%	<0.5	<0.5
Ethylbenzene	mg/kg	97%	<1	<1
m+p-xylene	mg/kg	94%	<2	<2
o-Xylene	mg/kg	97%	<1	<1
naphthalene	mg/kg	[NA]	<1	<1
Total +ve Xylenes	mg/kg	[NA]	[NA]	<3
Surrogate aaa-Trifluorotoluene	%	100	109	94

svTRH (C10-C40) in Soil						
Our Reference		232763-2	232763-7	232763-8	232763-10	232763-12
Your Reference	UNITS	S2-TP14	S2-TP18	S2-TP19	S2-TP20	S2-TP21
Depth		0-0.2	0.3-0.5	0.2	0-0.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	12/12/2019	12/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	92	87	81	90	89

svTRH (C10-C40) in Soil						
Our Reference		232763-19	232763-20	232763-21	232763-22	232763-24
Your Reference	UNITS	S2-TP24	S2-TP25	S2-TP25	S2-TP26	S2-TP27
Depth		0.5-0.7	0-0.2	0.3-0.5	0-0.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	88	92	91	69	91

svTRH (C10-C40) in Soil							
Our Reference		232763-32	232763-36	232763-38	232763-42	232763-46	
Your Reference	UNITS	S2-TP10	S2-TP12	S2-TP13	S2-TP2	S2-TP3	
Depth		0-0.1	0.0-0.2	0.5-0.7	0-0.1	0.4-0.5	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019	
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019	
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50	
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100	
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100	
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50	
Surrogate o-Terphenyl	%	98	93	92	83	88	

svTRH (C10-C40) in Soil		
Our Reference		232763-53
Your Reference	UNITS	S2-TP6
Depth		0.9-1.0
Type of sample		Soil
Date extracted	-	11/12/2019
Date analysed	-	12/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	89

PAHs in Soil						
Our Reference		232763-1	232763-2	232763-3	232763-4	232763-5
Your Reference	UNITS	S2-TP14	S2-TP14	S2-TP15	S2-TP15	S2-TP16
Depth		1.2-1.5	0-0.2	0.8-1.0	1.8-2.0	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	0.3	<0.1	<0.1
Anthracene	mg/kg	<0.1	0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.8	1.0	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.9	1.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.6	0.7	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.5	0.9	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.8	1	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.57	0.60	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3	0.3	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3	0.4	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	5.1	6.4	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.7	0.8	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.8	0.9	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.8	0.9	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	103	92	85	83

PAHs in Soil						
Our Reference		232763-6	232763-7	232763-8	232763-9	232763-10
Your Reference	UNITS	S2-TP16	S2-TP18	S2-TP19	S2-TP19	S2-TP20
Depth		1.0-1.2	0.3-0.5	0.2	0.4-0.6	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	0.3	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	92	107	88	99

PAHs in Soil						
Our Reference		232763-11	232763-12	232763-13	232763-14	232763-15
Your Reference	UNITS	S2-TP20	S2-TP21	S2-TP21	S2-TP22	S2-TP22
Depth		0.3-0.5	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.2	0.4	0.1
Pyrene	mg/kg	0.2	<0.1	0.2	0.3	0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	0.2	<0.1
Chrysene	mg/kg	0.1	<0.1	0.2	0.2	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	0.08	<0.05	0.1	0.2	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Total +ve PAH's	mg/kg	0.52	<0.05	1.3	1.9	0.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	91	102	95	93	89

PAHs in Soil						
Our Reference		232763-16	232763-17	232763-18	232763-19	232763-20
Your Reference	UNITS	S2-TP23	S2-TP23	S2-TP24	S2-TP24	S2-TP25
Depth		0-0.2	0.3-0.5	0-0.2	0.5-0.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	12/12/2019	12/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	0.1	0.2	0.3
Pyrene	mg/kg	<0.1	0.3	0.2	0.2	0.3
Benzo(a)anthracene	mg/kg	<0.1	0.2	0.1	0.1	0.1
Chrysene	mg/kg	<0.1	0.2	0.2	0.1	0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	0.2	0.4	<0.2
Benzo(a)pyrene	mg/kg	0.05	0.2	0.1	0.2	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	0.1	0.2	<0.1
Total +ve PAH's	mg/kg	0.05	1.6	1.0	1.6	1.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	92	92	99	102	99

PAHs in Soil						
Our Reference		232763-21	232763-22	232763-23	232763-24	232763-25
Your Reference	UNITS	S2-TP25	S2-TP26	S2-TP26	S2-TP27	S2-TP28
Depth		0.3-0.5	0-0.2	0.3	0-0.2	0.02
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	11/12/2019	12/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	0.1	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.2	0.80	<0.05	0.2	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	95	94	104	91

PAHs in Soil						
Our Reference		232763-26	232763-27	232763-28	232763-29	232763-30
Your Reference	UNITS	S2-TP28	S2-TP8	S2-TP8	S2-TP8	S2-TP9
Depth		0.6-0.8	0-0.2	0.8-1.0	2.5-2.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	0.4	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	0.7	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	0.7	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	0.4	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.2	0.5	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.2	0.5	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.1	0.3	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	0.2	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	1.3	3.7	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	89	97	89	90

PAHs in Soil						
Our Reference		232763-31	232763-32	232763-33	232763-34	232763-35
Your Reference	UNITS	S2-TP9	S2-TP10	S2-TP10	S2-TP10	S2-TP11
Depth		0.8-1.0	0-0.1	1.5	2.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	12/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.3	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.4	0.58	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	99	98	82	94	88

PAHs in Soil						
Our Reference		232763-36	232763-37	232763-38	232763-39	232763-40
Your Reference	UNITS	S2-TP12	S2-TP12	S2-TP13	S2-TP14	S2-TP1
Depth		0.0-0.2	0.8-1.0	0.5-0.7	0.3-0.5	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	11/12/2019	12/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	0.3	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.1	<0.1	1	<0.1
Anthracene	mg/kg	0.2	<0.1	<0.1	0.4	<0.1
Fluoranthene	mg/kg	1.6	0.3	0.2	3.7	<0.1
Pyrene	mg/kg	1.9	0.4	0.2	4.3	<0.1
Benzo(a)anthracene	mg/kg	1.2	0.3	0.1	2.9	<0.1
Chrysene	mg/kg	1.2	0.3	0.1	3.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	0.3	0.2	3.8	<0.2
Benzo(a)pyrene	mg/kg	1.2	0.2	0.2	2.7	0.08
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.1	<0.1	1.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.2	<0.1	<0.1	0.2	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7	0.1	0.1	1.4	<0.1
Total +ve PAH's	mg/kg	11	2.1	1.2	25	0.08
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.8	<0.5	<0.5	3.7	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.8	<0.5	<0.5	3.7	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.8	<0.5	<0.5	3.7	<0.5
Surrogate p-Terphenyl-d14	%	101	91	102	95	93

PAHs in Soil				_		
Our Reference		232763-41	232763-42	232763-43	232763-44	232763-46
Your Reference	UNITS	BD1 2019 1205	S2-TP2	S2-TP2	S2-TP2	S2-TP3
Depth			0-0.1	0.1-0.2	1.4-1.5	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	12/12/2019	11/12/2019	11/12/2019	12/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	92	96	90	83	92

PAHs in Soil						
Our Reference		232763-47	232763-48	232763-51	232763-52	232763-53
Your Reference	UNITS	S2-TP4	S2-TP4	S2-TP5	S2-TP6	S2-TP6
Depth		0-0.2	0.9-1.0	0.4-0.6	0-0.2	0.9-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	12/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.3	2.5	0.7
Anthracene	mg/kg	<0.1	<0.1	0.1	0.6	0.2
Fluoranthene	mg/kg	0.1	<0.1	1.2	3.8	1.4
Pyrene	mg/kg	0.2	<0.1	1.4	3.5	1.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	1	1.8	0.7
Chrysene	mg/kg	0.1	<0.1	1.2	1.9	0.7
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	1	2	1
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.81	1.2	0.63
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.4	0.5	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	0.5	0.6	0.4
Total +ve PAH's	mg/kg	0.51	<0.05	8.1	19	7.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	1.1	1.8	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	1.1	1.8	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	1.2	1.8	0.9
Surrogate p-Terphenyl-d14	%	93	95	98	100	99

PAHs in Soil					
Our Reference		232763-54	232763-55	232763-59	232763-67
Your Reference	UNITS	S2-TP7	S2-TP7	BD2/2019 1210	S2-TP23
Depth		0-0.2	0.8-1.0		0.8-1.0
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.6	0.3	<0.1
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	1.1	0.9	0.2
Pyrene	mg/kg	<0.1	1.2	1.0	0.2
Benzo(a)anthracene	mg/kg	<0.1	0.6	0.6	0.1
Chrysene	mg/kg	<0.1	0.7	0.9	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.8	0.8	0.2
Benzo(a)pyrene	mg/kg	<0.05	0.5	0.5	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	0.3	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3	0.3	0.1
Total +ve PAH's	mg/kg	<0.05	6.2	5.6	1.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	0.6	0.7	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	0.7	0.7	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	0.7	0.8	<0.5
Surrogate p-Terphenyl-d14	%	92	94	91	87

Organochlorine Pesticides in soil						
Our Reference		232763-2	232763-8	232763-10	232763-12	232763-19
Your Reference	UNITS	S2-TP14	S2-TP19	S2-TP20	S2-TP21	S2-TP24
Depth		0-0.2	0.2	0-0.2	0-0.2	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	12/12/2019
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	107	95	102	101

Organochlorine Pesticides in soil						
Our Reference		232763-20	232763-21	232763-22	232763-24	232763-32
Your Reference	UNITS	S2-TP25	S2-TP25	S2-TP26	S2-TP27	S2-TP10
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	0.8	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	101	95

Organochlorine Pesticides in soil						
Our Reference		232763-36	232763-38	232763-42	232763-46	232763-53
Your Reference	UNITS	S2-TP12	S2-TP13	S2-TP2	S2-TP3	S2-TP6
Depth		0.0-0.2	0.5-0.7	0-0.1	0.4-0.5	0.9-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	1.2	<0.1	<0.1	<0.1	0.3
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	1.3	<0.1	<0.1	<0.1	0.2
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	100	95	90	99

Organophosphorus Pesticides									
Our Reference		232763-2	232763-8	232763-10	232763-12	232763-19			
Your Reference	UNITS	S2-TP14	S2-TP19	S2-TP20	S2-TP21	S2-TP24			
Depth		0-0.2	0.2	0-0.2	0-0.2	0.5-0.7			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date extracted	•	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019			
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	12/12/2019			
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1			
Surrogate TCMX	%	101	107	95	102	101			

Organophosphorus Pesticides						
Our Reference		232763-20	232763-21	232763-22	232763-24	232763-32
Your Reference	UNITS	S2-TP25	S2-TP25	S2-TP26	S2-TP27	S2-TP10
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	101	95

Organophosphorus Pesticides								
Our Reference		232763-36	232763-38	232763-42	232763-46	232763-53		
Your Reference	UNITS	S2-TP12	S2-TP13	S2-TP2	S2-TP3	S2-TP6		
Depth		0.0-0.2	0.5-0.7	0-0.1	0.4-0.5	0.9-1.0		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019		
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019		
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Surrogate TCMX	%	100	100	95	90	99		

PCBs in Soil						
Our Reference		232763-2	232763-8	232763-10	232763-12	232763-19
Your Reference	UNITS	S2-TP14	S2-TP19	S2-TP20	S2-TP21	S2-TP24
Depth		0-0.2	0.2	0-0.2	0-0.2	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	12/12/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	107	95	102	101

PCBs in Soil						
Our Reference		232763-20	232763-21	232763-22	232763-24	232763-32
Your Reference	UNITS	S2-TP25	S2-TP25	S2-TP26	S2-TP27	S2-TP10
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	97	96	95	101	95

PCBs in Soil						
Our Reference		232763-36	232763-38	232763-42	232763-46	232763-53
Your Reference	UNITS	S2-TP12	S2-TP13	S2-TP2	S2-TP3	S2-TP6
Depth		0.0-0.2	0.5-0.7	0-0.1	0.4-0.5	0.9-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	100	95	90	99

Acid Extractable metals in soil									
Our Reference		232763-1	232763-2	232763-3	232763-4	232763-5			
Your Reference	UNITS	S2-TP14	S2-TP14	S2-TP15	S2-TP15	S2-TP16			
Depth		1.2-1.5	0-0.2	0.8-1.0	1.8-2.0	0-0.2			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019			
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019			
Arsenic	mg/kg	<4	<4	<4	<4	<4			
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4			
Chromium	mg/kg	2	3	3	2	5			
Copper	mg/kg	<1	8	17	5	11			
Lead	mg/kg	3	83	100	11	9			
Mercury	mg/kg	<0.1	0.1	0.2	<0.1	<0.1			
Nickel	mg/kg	<1	2	1	<1	2			
Zinc	mg/kg	170	86	140	10	12			

Acid Extractable metals in soil						
Our Reference		232763-6	232763-7	232763-8	232763-9	232763-10
Your Reference	UNITS	S2-TP16	S2-TP18	S2-TP19	S2-TP19	S2-TP20
Depth		1.0-1.2	0.3-0.5	0.2	0.4-0.6	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	4	8	3	9
Copper	mg/kg	<1	7	4	11	4
Lead	mg/kg	5	8	9	86	9
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	1	3	2	3
Zinc	mg/kg	6	8	18	81	21

Acid Extractable metals in soil						
Our Reference		232763-11	232763-12	232763-13	232763-14	232763-15
Your Reference	UNITS	S2-TP20	S2-TP21	S2-TP21	S2-TP22	S2-TP22
Depth		0.3-0.5	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	7	2	5	3
Copper	mg/kg	12	3	11	4	8
Lead	mg/kg	56	9	130	16	48
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	2	2	1	1
Zinc	mg/kg	59	19	140	26	78
Acid Extractable metals in soil	·	·			·	
Our Reference		232763-16	232763-17	232763-18	232763-19	232763-20
Your Reference	UNITS	S2-TP23	S2-TP23	S2-TP24	S2-TP24	S2-TP25
Depth		0-0.2	0.3-0.5	0-0.2	0.5-0.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	4	6	4	6
Copper	mg/kg	7	16	4	9	4
Lead	mg/kg	35	110	10	89	12
Mercury	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Nickel	mg/kg	2	2	2	2	2

Acid Extractable metals in soil						
Our Reference		232763-21	232763-22	232763-23	232763-24	232763-25
Your Reference	UNITS	S2-TP25	S2-TP26	S2-TP26	S2-TP27	S2-TP28
Depth		0.3-0.5	0-0.2	0.3	0-0.2	0.02
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	6	4	5	4
Copper	mg/kg	7	4	7	6	16
Lead	mg/kg	50	8	23	11	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	2	1	1	1
Zinc	mg/kg	44	22	43	13	10
Acid Extractable metals in soil						
Our Reference		232763-26	232763-27	232763-28	232763-29	232763-30
Your Reference	UNITS	S2-TP28	S2-TP8	S2-TP8	S2-TP8	S2-TP9
Depth		0.6-0.8	0-0.2	0.8-1.0	2.5-2.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	3	2	6	3
Copper				0		4
	mg/kg	<1	7	6	<1	
Lead	mg/kg mg/kg	<1 2	7 48	42	<1 5	4
Lead Mercury	mg/kg mg/kg mg/kg	<1 2 <0.1	7 48 0.5	6 42 0.3	<1 5 <0.1	4 <0.1
Lead Mercury Nickel	mg/kg mg/kg mg/kg mg/kg	<1 2 <0.1 <1	7 48 0.5 <1	6 42 0.3 <1	<1 5 <0.1 <1	4 <0.1 <1

Acid Extractable metals in soil						
Our Reference		232763-31	232763-32	232763-33	232763-34	232763-35
Your Reference	UNITS	S2-TP9	S2-TP10	S2-TP10	S2-TP10	S2-TP11
Depth		0.8-1.0	0-0.1	1.5	2.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	3	4	1	2
Copper	mg/kg	4	3	<1	<1	<1
Lead	mg/kg	27	8	7	<1	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	1	1	<1	<1
Zinc	mg/kg	35	10	6	<1	3
Acid Extractable metals in soil						
Our Reference		232763-36	232763-37	232763-38	232763-39	232763-40
Your Reference						
	UNITS	S2-TP12	S2-TP12	S2-TP13	S2-TP14	S2-TP1
Depth	UNITS	S2-TP12 0.0-0.2	S2-TP12 0.8-1.0	S2-TP13 0.5-0.7	S2-TP14 0.3-0.5	S2-TP1 0-0.2
Depth Type of sample	UNITS	S2-TP12 0.0-0.2 Soil	S2-TP12 0.8-1.0 Soil	S2-TP13 0.5-0.7 Soil	S2-TP14 0.3-0.5 Soil	S2-TP1 0-0.2 Soil
Depth Type of sample Date prepared	UNITS -	S2-TP12 0.0-0.2 Soil 12/12/2019	S2-TP12 0.8-1.0 Soil 12/12/2019	S2-TP13 0.5-0.7 Soil 12/12/2019	S2-TP14 0.3-0.5 Soil 12/12/2019	S2-TP1 0-0.2 Soil 12/12/2019
Depth Type of sample Date prepared Date analysed	UNITS - -	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019	S2-TP1 0-0.2 Soil 12/12/2019 12/12/2019
Depth Type of sample Date prepared Date analysed Arsenic	UNITS - - mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019 <4	S2-TP1 0-0.2 Soil 12/12/2019 12/12/2019 <4
Depth Type of sample Date prepared Date analysed Arsenic Cadmium	UNITS - mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4 <0.4	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019 <4 <0.4	S2-TP1 0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4
Depth Type of sample Date prepared Date analysed Arsenic Cadmium Chromium	UNITS - - mg/kg mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4 2	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4 3	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4 <0.4 1	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019 <4 <0.4 4	S2-TP1 0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4 3
Depth Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper	UNITS - mg/kg mg/kg mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4 2 2 7	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4 3 1	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4 <0.4 1 3	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019 <4 <0.4 <0.4 4 13	S2-TP1 0-0.2 Soil 12/12/2019 (4 <0.4 3 3 3
Depth Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4 2 7 7 41	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4 3 1 10	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4 <0.4 1 3 23	S2-TP14 0.3-0.5 Soil 12/12/2019 (24) <0.4 4 13 100	S2-TP1 0-0.2 Soil 12/12/2019 12/12/2019 <4 <0.4 3 3 3 15
Depth Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead Mercury	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 12/12/2019 <4	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4 3 1 10 <0.1	S2-TP13 0.5-0.7 Soil 12/12/2019 (24 <0.4 1 3 23 <0.1	S2-TP14 0.3-0.5 Soil 12/12/2019 (4 <0.4 4 (0.4 4 13 100 0.1	S2-TP1 0-0.2 Soil 12/12/2019 <4 <0.4 3 3 3 15 <0.1
Depth Type of sample Date prepared Date analysed Arsenic Cadmium Chromium Copper Lead Mercury Nickel	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	S2-TP12 0.0-0.2 Soil 12/12/2019 <4	S2-TP12 0.8-1.0 Soil 12/12/2019 12/12/2019 <4 <0.4 3 1 10 <0.1 1	S2-TP13 0.5-0.7 Soil 12/12/2019 12/12/2019 <4 <0.4 1 3 23 <0.1 <1	S2-TP14 0.3-0.5 Soil 12/12/2019 12/12/2019 <4 <0.4 4 13 100 0.1 2	S2-TP1 0-0.2 Soil 12/12/2019 <4 <0.4 3 3 3 15 <0.1 <1

Acid Extractable metals in soil								
Our Reference		232763-41	232763-42	232763-43	232763-44	232763-46		
Your Reference	UNITS	BD1 2019 1205	S2-TP2	S2-TP2	S2-TP2	S2-TP3		
Depth			0-0.1	0.1-0.2	1.4-1.5	0.4-0.5		
Type of sample		Soil	Soil	Soil	Soil	Soil		
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019		
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019		
Arsenic	mg/kg	<4	<4	<4	<4	<4		
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4		
Chromium	mg/kg	3	16	11	11	3		
Copper	mg/kg	3	12	7	<1	2		
Lead	mg/kg	14	13	13	4	6		
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1		
Nickel	mg/kg	1	6	5	<1	2		
Zinc	mg/kg	25	35	25	2	14		

Acid Extractable metals in soil						
Our Reference		232763-47	232763-48	232763-51	232763-52	232763-53
Your Reference	UNITS	S2-TP4	S2-TP4	S2-TP5	S2-TP6	S2-TP6
Depth		0-0.2	0.9-1.0	0.4-0.6	0-0.2	0.9-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	4	3	3	2	3
Copper	mg/kg	3	2	6	4	7
Lead	mg/kg	18	14	19	31	39
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	1	1	<1	1
Zinc	mg/kg	30	24	62	28	39

Acid Extractable metals in soil						
Our Reference		232763-54	232763-55	232763-59	232763-67	232763-70
Your Reference	UNITS	S2-TP7	S2-TP7	BD2/2019 1210	S2-TP23	S2-TP12 - [TRIPLICATE]
Depth		0-0.2	0.8-1.0		0.8-1.0	0.8-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	3	4	4	3
Copper	mg/kg	2	5	18	15	3
Lead	mg/kg	8	37	130	55	17
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	2	1	2	2	1
Zinc	mg/kg	19	53	100	94	34

Misc Soil - Inorg						
Our Reference		232763-2	232763-8	232763-10	232763-12	232763-19
Your Reference	UNITS	S2-TP14	S2-TP19	S2-TP20	S2-TP21	S2-TP24
Depth		0-0.2	0.2	0-0.2	0-0.2	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Total Phenolics (as Phenol)	ma/ka	<5	<5	<5	<5	<5
	3.3	C C		-	-	-
	<u> </u>	•	-	-	-	-
Misc Soil - Inorg	5.5		-			
Misc Soil - Inorg Our Reference		232763-20	232763-21	232763-22	232763-24	232763-32
Misc Soil - Inorg Our Reference Your Reference	UNITS	232763-20 S2-TP25	232763-21 S2-TP25	232763-22 S2-TP26	232763-24 S2-TP27	232763-32 S2-TP10
Misc Soil - Inorg Our Reference Your Reference Depth	UNITS	232763-20 S2-TP25 0-0.2	232763-21 S2-TP25 0.3-0.5	232763-22 S2-TP26 0-0.2	232763-24 S2-TP27 0-0.2	232763-32 S2-TP10 0-0.1
Misc Soil - Inorg Our Reference Your Reference Depth Type of sample	UNITS	232763-20 S2-TP25 0-0.2 Soil	232763-21 S2-TP25 0.3-0.5 Soil	232763-22 S2-TP26 0-0.2 Soil	232763-24 S2-TP27 0-0.2 Soil	232763-32 S2-TP10 0-0.1 Soil

Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5			
Misc Soil - Inorg									
Our Reference		232763-36	232763-38	232763-42	232763-46	232763-53			
Your Reference	UNITS	S2-TP12	S2-TP13	S2-TP2	S2-TP3	S2-TP6			
Depth		0.0-0.2	0.5-0.7	0-0.1	0.4-0.5	0.9-1.0			
Type of sample		Soil	Soil	Soil	Soil	Soil			
Date prepared	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019			
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019			
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5			

12/12/2019

12/12/2019

12/12/2019

12/12/2019

12/12/2019

_

Date analysed

Moisture						
Our Reference		232763-1	232763-2	232763-3	232763-4	232763-5
Your Reference	UNITS	S2-TP14	S2-TP14	S2-TP15	S2-TP15	S2-TP16
Depth		1.2-1.5	0-0.2	0.8-1.0	1.8-2.0	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	5.3	1.8	3.1	9.2	4.6
Moisture						
Our Reference		232763-6	232763-7	232763-8	232763-9	232763-10
Your Reference	UNITS	S2-TP16	S2-TP18	S2-TP19	S2-TP19	S2-TP20
Depth		1.0-1.2	0.3-0.5	0.2	0.4-0.6	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	3.8	9.8	5.3	5.6	7.1
Moisture						
Our Reference		232763-11	232763-12	232763-13	232763-14	232763-15
Your Reference	UNITS	S2-TP20	S2-TP21	S2-TP21	S2-TP22	S2-TP22
Depth		0.3-0.5	0-0.2	0.3-0.5	0-0.2	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	6.2	6.4	6.7	7.9	4.1
Moisture						
Our Reference		232763-16	232763-17	232763-18	232763-19	232763-20
Your Reference	UNITS	S2-TP23	S2-TP23	S2-TP24	S2-TP24	S2-TP25
Depth		0-0.2	0.3-0.5	0-0.2	0.5-0.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	0.9	7.8	5.3	6.1	4.8
Moisture						
Our Reference		232763-21	232763-22	232763-23	232763-24	232763-25
Your Reference	UNITS	S2-TP25	S2-TP26	S2-TP26	S2-TP27	S2-TP28
Depth		0.3-0.5	0-0.2	0.3	0-0.2	0.02
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	4.6	6.0	5.4	6.3	6.0

Moisture						
Our Reference		232763-26	232763-27	232763-28	232763-29	232763-30
Your Reference	UNITS	S2-TP28	S2-TP8	S2-TP8	S2-TP8	S2-TP9
Depth		0.6-0.8	0-0.2	0.8-1.0	2.5-2.7	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	3.1	1.0	4.1	28	5.2

Moisture						
Our Reference		232763-31	232763-32	232763-33	232763-34	232763-35
Your Reference	UNITS	S2-TP9	S2-TP10	S2-TP10	S2-TP10	S2-TP11
Depth		0.8-1.0	0-0.1	1.5	2.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	3.5	0.5	16	3.2	4.4
Moisture						

moloture						
Our Reference		232763-36	232763-37	232763-38	232763-39	232763-40
Your Reference	UNITS	S2-TP12	S2-TP12	S2-TP13	S2-TP14	S2-TP1
Depth		0.0-0.2	0.8-1.0	0.5-0.7	0.3-0.5	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	2.5	4.6	3.2	5.4	5.1

Moisture						
Our Reference		232763-41	232763-42	232763-43	232763-44	232763-46
Your Reference	UNITS	BD1 2019 1205	S2-TP2	S2-TP2	S2-TP2	S2-TP3
Depth			0-0.1	0.1-0.2	1.4-1.5	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	6.0	3.4	5.7	14	8.9

Moisture						
Our Reference		232763-47	232763-48	232763-51	232763-52	232763-53
Your Reference	UNITS	S2-TP4	S2-TP4	S2-TP5	S2-TP6	S2-TP6
Depth		0-0.2	0.9-1.0	0.4-0.6	0-0.2	0.9-1.0
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	11/12/2019
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Moisture	%	7.4	6.3	6.6	3.9	4.6
Moisture						
----------------	-------	------------	------------	---------------	------------	
Our Reference		232763-54	232763-55	232763-59	232763-67	
Your Reference	UNITS	S2-TP7	S2-TP7	BD2/2019 1210	S2-TP23	
Depth		0-0.2	0.8-1.0		0.8-1.0	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	11/12/2019	11/12/2019	11/12/2019	11/12/2019	
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	
Moisture	%	4.3	4.7	3.4	8.0	

Asbestos ID - soils						
Our Reference		232763-8	232763-14	232763-24	232763-25	232763-47
Your Reference	UNITS	S2-TP19	S2-TP22	S2-TP27	S2-TP28	S2-TP4
Depth		0.2	0-0.2	0-0.2	0.02	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	Approx. 30g	Approx. 60g	Approx. 30g	Approx. 25g	Approx. 30g
Sample Description	-	Beige fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils NEPM						
Our Reference		232763-2	232763-5	232763-10	232763-11	232763-12
Your Reference	UNITS	S2-TP14	S2-TP16	S2-TP20	S2-TP20	S2-TP21
Depth		0-0.2	0-0.2	0-0.2	0.3-0.5	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	887.97	1,004.41	857.19	777.58	915.97
Sample Description	-	Brown sandy soil & rocks	Beige sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic
						mineral fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		232763-15	232763-16	232763-17	232763-18	232763-19
Your Reference	UNITS	S2-TP22	S2-TP23	S2-TP23	S2-TP24	S2-TP24
Depth		0.3-0.5	0-0.2	0.3-0.5	0-0.2	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	1,050.01	686.91	750.77	779.47	859.83
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic mineral fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		232763-20	232763-21	232763-22	232763-27	232763-30
Your Reference	UNITS	S2-TP25	S2-TP25	S2-TP26	S2-TP8	S2-TP9
Depth		0-0.2	0.3-0.5	0-0.2	0-0.2	0-0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	985.31	1,022.02	828.72	929	811.74
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks	Brown sandy soil & rocks	Beige sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		232763-32	232763-35	232763-36	232763-38	232763-42
Your Reference	UNITS	S2-TP10	S2-TP11	S2-TP12	S2-TP13	S2-TP2
Depth		0-0.1	0-0.2	0.0-0.2	0.5-0.7	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	938.29	806.95	1,002.96	862.79	1,361.2
Sample Description	-	Beige sandy soil & rocks	Beige sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected Synthetic mineral fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		232763-45	232763-51	232763-52	232763-54	232763-61
Your Reference	UNITS	S2-TP3	S2-TP5	S2-TP6	S2-TP7	S2-TP15
Depth		0-0.2	0.4-0.6	0-0.2	0-0.2	8.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	1,017.91	977.63	1,000.07	967.57	951.71
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Asbestos ID - soils NEPM						
Our Reference		232763-62	232763-63	232763-64	232763-65	232763-66
Your Reference	UNITS	S2-TP5	S2-TP6	S2-TP12	S2-TP15	S2-27
Depth		0-0.2	0.4-0.6	0.3-0.5	0-0.1	0.3-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	12/12/2019	12/12/2019	12/12/2019	12/12/2019	12/12/2019
Sample mass tested	g	983.81	1,137.79	905.04	921.27	772.95
Sample Description	-	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks	Brown sandy soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	_	-	-	-
FA and AF Estimation*	g	-	-	-	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001

Method ID	Methodology Summany
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012/017	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8	
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019	
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	2	<25	<25	0	91	94	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	2	<25	<25	0	91	94	
Benzene	mg/kg	0.2	Org-016	<0.2	2	<0.2	<0.2	0	92	95	
Toluene	mg/kg	0.5	Org-016	<0.5	2	<0.5	<0.5	0	92	97	
Ethylbenzene	mg/kg	1	Org-016	<1	2	<1	<1	0	89	90	
m+p-xylene	mg/kg	2	Org-016	<2	2	<2	<2	0	92	94	
o-Xylene	mg/kg	1	Org-016	<1	2	<1	<1	0	87	89	
naphthalene	mg/kg	1	Org-014	<1	2	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	97	2	94	102	8	100	105	

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-			[NT]	22	11/12/2019	11/12/2019			[NT]	
Date analysed	-			[NT]	22	11/12/2019	11/12/2019			[NT]	
TRH C ₆ - C ₉	mg/kg	25	Org-016	[NT]	22	<25	<25	0		[NT]	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	[NT]	22	<25	<25	0		[NT]	
Benzene	mg/kg	0.2	Org-016	[NT]	22	<0.2	<0.2	0		[NT]	
Toluene	mg/kg	0.5	Org-016	[NT]	22	<0.5	<0.5	0		[NT]	
Ethylbenzene	mg/kg	1	Org-016	[NT]	22	<1	<1	0		[NT]	
m+p-xylene	mg/kg	2	Org-016	[NT]	22	<2	<2	0		[NT]	
o-Xylene	mg/kg	1	Org-016	[NT]	22	<1	<1	0		[NT]	
naphthalene	mg/kg	1	Org-014	[NT]	22	<1	<1	0		[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	[NT]	22	106	105	1	[NT]	[NT]	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	12/12/2019
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	2	<50	<50	0	95	98
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	2	<100	<100	0	104	103
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	2	<100	<100	0	62	76
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	2	<50	<50	0	95	98
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	2	<100	<100	0	104	103
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	2	<100	<100	0	62	76
Surrogate o-Terphenyl	%		Org-003	74	2	92	88	4	101	81

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				22	11/12/2019	11/12/2019		[NT]	[NT]
Date analysed	-				22	12/12/2019	12/12/2019		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003		22	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003		22	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003		22	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003		22	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003		22	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003		22	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-003	[NT]	22	69	91	28	[NT]	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		12/12/2019	11/12/2019
Naphthalene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	126	94
Acenaphthylene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	<0.1	0	120	92
Phenanthrene	mg/kg	0.1	Org-012/017	<0.1	2	0.2	0.4	67	124	98
Anthracene	mg/kg	0.1	Org-012/017	<0.1	2	0.1	0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	<0.1	2	0.8	1.2	40	126	94
Pyrene	mg/kg	0.1	Org-012/017	<0.1	2	0.9	1.3	36	114	96
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	0.6	0.9	40	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	<0.1	2	0.5	0.8	46	124	70
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	<0.2	2	0.8	1	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	<0.05	2	0.57	0.83	37	88	88
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	<0.1	2	0.3	0.4	29	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	<0.1	2	<0.1	0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	<0.1	2	0.3	0.5	50	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	105	2	103	102	1	90	91

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	232763-39
Date extracted	-			[NT]	22	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			[NT]	22	12/12/2019	12/12/2019		11/12/2019	11/12/2019
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	102	98
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	96	103
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	104	112
Anthracene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	22	0.1	0.1	0	92	129
Pyrene	mg/kg	0.1	Org-012/017	[NT]	22	0.1	0.1	0	92	120
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	22	0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	94	126
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	22	0.2	0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	22	0.1	0.1	0	82	110
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	22	0.1	0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	22	95	95	0	93	94

QUALITY CONTROL: PAHs in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	232763-59
Date extracted	-			[NT]	26	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			[NT]	26	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	102	108
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	96	106
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	104	124
Anthracene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	92	128
Pyrene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	92	111
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	94	132
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	26	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	26	<0.05	<0.05	0	82	117
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	26	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	26	87	89	2	93	102

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	37	11/12/2019	11/12/2019		[NT]	[NT]
Date analysed	-			[NT]	37	11/12/2019	11/12/2019		[NT]	[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	37	0.1	0.2	67	[NT]	[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	37	0.3	0.5	50	[NT]	[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	37	0.4	0.6	40	[NT]	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	37	0.3	0.4	29	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	37	0.3	0.5	50	[NT]	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	37	0.3	0.5	50	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	37	0.2	0.3	40	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	37	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	37	0.1	0.2	67	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	37	91	99	8	[NT]	[NT]

QUALIT	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	48	11/12/2019	11/12/2019			[NT]
Date analysed	-			[NT]	48	11/12/2019	11/12/2019			[NT]
Naphthalene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017	[NT]	48	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012/017	[NT]	48	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017	[NT]	48	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	48	95	98	3		[NT]

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				55	11/12/2019	11/12/2019		[NT]	
Date analysed	-				55	11/12/2019	11/12/2019		[NT]	
Naphthalene	mg/kg	0.1	Org-012/017		55	<0.1	<0.1	0	[NT]	
Acenaphthylene	mg/kg	0.1	Org-012/017		55	<0.1	0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-012/017		55	<0.1	<0.1	0	[NT]	
Fluorene	mg/kg	0.1	Org-012/017		55	<0.1	<0.1	0	[NT]	
Phenanthrene	mg/kg	0.1	Org-012/017		55	0.6	0.8	29	[NT]	
Anthracene	mg/kg	0.1	Org-012/017		55	0.2	0.2	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-012/017		55	1.1	1.7	43	[NT]	
Pyrene	mg/kg	0.1	Org-012/017		55	1.2	1.9	45	[NT]	
Benzo(a)anthracene	mg/kg	0.1	Org-012/017		55	0.6	0.9	40	[NT]	
Chrysene	mg/kg	0.1	Org-012/017		55	0.7	1.1	44	[NT]	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012/017		55	0.8	1	22	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012/017		55	0.5	0.74	39	[NT]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012/017		55	0.2	0.3	40	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012/017		55	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012/017		55	0.3	0.4	29	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	[NT]	55	94	95	1	[NT]	[NT]

QUALITY CONTR	ROL: Organo	chlorine l	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		12/12/2019	11/12/2019
НСВ	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	118	116
gamma-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	114	118
Heptachlor	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	102	116
delta-BHC	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	122	126
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	122	124
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	122	128
Dieldrin	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	124	118
Endrin	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	112	116
pp-DDD	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	112	118
Endosulfan II	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	124	102
Methoxychlor	mg/kg	0.1	Org-005	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	99	2	101	100	1	96	82

QUALITY CONTR	OL: Organo	chlorine l	Pesticides in soil	_		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	11/12/2019	11/12/2019		[NT]	[NT]
Date analysed	-			[NT]	22	12/12/2019	12/12/2019		[NT]	[NT]
НСВ	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-005	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	[NT]	22	95	97	2	[NT]	[NT]

QUALITY CONT	ROL: Organ	ophosph	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		12/12/2019	11/12/2019
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	92	94
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	90	66
Dimethoate	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	88	82
Fenitrothion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	86	86
Malathion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	80	66
Parathion	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	88	88
Ronnel	mg/kg	0.1	Org-008	<0.1	2	<0.1	<0.1	0	92	92
Surrogate TCMX	%		Org-008	99	2	101	100	1	96	82

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	11/12/2019	11/12/2019		[NT]	[NT]
Date analysed	-			[NT]	22	12/12/2019	12/12/2019		[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-008	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-008	[NT]	22	95	97	2	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date extracted	-			11/12/2019	2	11/12/2019	11/12/2019		11/12/2019	11/12/2019
Date analysed	-			11/12/2019	2	11/12/2019	11/12/2019		12/12/2019	11/12/2019
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	71	81
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	2	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	99	2	101	100	1	96	82

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	11/12/2019	11/12/2019		[NT]	[NT]
Date analysed	-			[NT]	22	12/12/2019	12/12/2019		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-006	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-006	[NT]	22	95	97	2	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date prepared	-			12/12/2019	2	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Date analysed	-			12/12/2019	2	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	104	104
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	98	91
Chromium	mg/kg	1	Metals-020	<1	2	3	3	0	105	99
Copper	mg/kg	1	Metals-020	<1	2	8	8	0	101	101
Lead	mg/kg	1	Metals-020	<1	2	83	80	4	103	92
Mercury	mg/kg	0.1	Metals-021	<0.1	2	0.1	0.1	0	107	105
Nickel	mg/kg	1	Metals-020	<1	2	2	1	67	98	94
Zinc	mg/kg	1	Metals-020	<1	2	86	73	16	101	96

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-9	232763-39	
Date prepared	-			[NT]	22	12/12/2019	12/12/2019		12/12/2019	12/12/2019	
Date analysed	-			[NT]	22	12/12/2019	12/12/2019		12/12/2019	12/12/2019	
Arsenic	mg/kg	4	Metals-020	[NT]	22	<4	<4	0	109	112	
Cadmium	mg/kg	0.4	Metals-020	[NT]	22	<0.4	<0.4	0	104	101	
Chromium	mg/kg	1	Metals-020	[NT]	22	6	6	0	111	104	
Copper	mg/kg	1	Metals-020	[NT]	22	4	3	29	105	113	
Lead	mg/kg	1	Metals-020	[NT]	22	8	8	0	116	108	
Mercury	mg/kg	0.1	Metals-021	[NT]	22	<0.1	<0.1	0	97	110	
Nickel	mg/kg	1	Metals-020	[NT]	22	2	3	40	103	103	
Zinc	mg/kg	1	Metals-020	[NT]	22	22	20	10	108	#	

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-10	232763-59
Date prepared	-			[NT]	26	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Date analysed	-			[NT]	26	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Arsenic	mg/kg	4	Metals-020	[NT]	26	<4	<4	0	115	115
Cadmium	mg/kg	0.4	Metals-020	[NT]	26	<0.4	<0.4	0	107	108
Chromium	mg/kg	1	Metals-020	[NT]	26	2	2	0	116	110
Copper	mg/kg	1	Metals-020	[NT]	26	<1	<1	0	109	111
Lead	mg/kg	1	Metals-020	[NT]	26	2	2	0	117	##
Mercury	mg/kg	0.1	Metals-021	[NT]	26	<0.1	<0.1	0	103	88
Nickel	mg/kg	1	Metals-020	[NT]	26	<1	1	0	106	111
Zinc	mg/kg	1	Metals-020	[NT]	26	6	7	15	113	79

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	37	12/12/2019	12/12/2019		[NT]	
Date analysed	-			[NT]	37	12/12/2019	12/12/2019		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	37	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	37	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	37	3	3	0	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	37	1	2	67	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	37	10	16	46	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	37	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	37	1	1	0	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	37	17	31	58	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	48	12/12/2019	12/12/2019		[NT]	[NT]
Date analysed	-			[NT]	48	12/12/2019	12/12/2019		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	48	<4	<4	0	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	48	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	48	3	4	29	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	48	2	2	0	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	48	14	13	7	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	48	<0.1	<0.1	0	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	48	1	1	0	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	48	24	24	0	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	55	12/12/2019	12/12/2019		[NT]	[NT]
Date analysed	-			[NT]	55	12/12/2019	12/12/2019		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	55	<4	<4	0	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	55	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	55	3	3	0	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	55	5	6	18	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	55	37	45	20	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	55	<0.1	<0.1	0	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	55	1	1	0	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	55	53	77	37	[NT]	[NT]

QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	232763-8
Date prepared	-			12/12/2019	2	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Date analysed	-			12/12/2019	2	12/12/2019	12/12/2019		12/12/2019	12/12/2019
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	2	<5	<5	0	96	94
QUALITY	CONTROL	Misc Soi	il - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	22	12/12/2019	12/12/2019		[NT]	[NT]

5

mg/kg

Inorg-031

12/12/2019

<5

22

22

12/12/2019

<5

0

Date analysed

Total Phenolics (as Phenol)

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nator Guidalinas recommand that Thermotolerant Caliform, Easeal Entergenesi, & E Cali Joyals are loss than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: Excessive sample volume was provided for asbestos analysis. A portion of the supplied sample was sub-sampled according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g (50mL) of sample in its own

container as per AS4964-2004.

Note: Sample 232763-14 was sub-sampled from a bag provided by the client.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 232763-8,25,24,47 were sub-sampled from jars provided by the client.

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Acid Extractable Metals in Soil:

-The laboratory RPD acceptance criteria has been exceeded for 232763-37 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 232763-70.

- # Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

- ## Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Project No:	72505	15		<u></u>	Suburi	<u>· 1</u> =	Randwi			To:	Envirol ab		
Project Name	POWI	H			Order	Number	T CALICITY			10.	12 Ashley Str	eet Chate	wood 2067
Project Manage	r Paul (Sample	PL.	ΔΠ			Attn:	Aileen Hie	eet, onate	
Emails:	naul	orman@@	louglasna	artners com	au: am	elia dani	<u></u>	nartners	s com ai	<u></u>	Alleeinnie		
Date Required:	thinds 7	arthturnato	Vind 7	A 29	ida, am	Jild.ddilli	<u>aguougia</u>	parater	<u>s.com.a</u>	Email	Ahie@envir	olah com	au
Prior Storage:			ue ⊓ St	-vai nelved	Do sam	nles conta	in 'potentia	' HBM?	Yes 🗆		If YES, then handle, to	ansport and	store in accordance with EPM HAZ
		<u> </u>	Sample	Container			potonta					anoportana	
		pled	Туре	Туре					Analytes				
Sample	Lab	ami	_ 5	s j	e	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	3a	ي م				Notes (processation
ID	ID	ů ů	vati	Jas Jast	ç	<u>۾</u>	影도	õ	D sto	I ₹			Notes/preservation
		ate	, > 	0° d	Ш	l E	L <u>t</u> t i	Ju a	90 40	I ¥			
			~ >	0 6	U U	<u> </u>	2	Ö	Эй				
SZTPI4 12	t						X						· ·
52-7P14 8.2	2			-		X				X,			
52-TP15 1.0	3			_			X			$\mathbf{\mathbf{\nabla}}$		(A)	Envirolab Services
12 1P15 2:0	4					<u></u>	\mathbf{X}	÷.					AB
52-TD16 0.5-	5						X-1			X		Job_N	232763
SZ-TPIB	6						·	. •		X		Date R	eceived 10 / 12 / 19
52-70.705	NR .				\overline{X}			;		1		Time R	eceived: 9,55
52-TP18 -7	7				X			,	. \			Temp	CoolAmbient
57 - TPA 0.2	8			·= = = ;		X			X			Cooling Securit	: ice/icepacto
52-TP16:2	9				,		X		1				
S7 = TP20 0-7	10			<u>v -</u>		X		· <u>-</u>		X			1
Sz-TP70 22	{}	<u> </u>				/- 	X						, ,
52-FP21 0.7	12			×						X I			<u> </u>
SZ-TPZ 03-	13		•				X						<u> </u>
52-TPZ7 0.2	14				÷.	ŀ	1×		X				
PQL (S) mg/kg											ANZEC	C PQLs r	eq'd for all water analytes
PQL = practical	quantit	ation limit.	lf none g	given, default	to Labor	atory Met	hod Detec	tion Limit		Lah Da	nort/Poforonae N		2
Metals to Analys	se: 8HN	l unless sp	ecified he	ere:	<u>.</u>					сар ке		10: L3.	4+63
Total number of	sample	es in conta	iner:	Reli	nquished	by:		Transpo	rted to la	boratory l	by:		

.

F

.

1

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

	Project No:	72505	5.15			Suburb: Randwick				To: EnviroLab								
	Project Name:	POWI	Н			Order N	lumber			:		12/	Ashley Str	eet, Chats	swood 20	67		
	Project Manage	r:Paul C	Gorman			Sample	er:	AD			Attn:	Aile	en Hie					
	Emails:	paul.g	gorman@c	louglaspa	rtners.com	.au; ame	lia.dani@	0douglas	spartners	s.com.a								
	Date Required:	stand	ard turn and	ûnd -	AAD	-					Email:	<u>Ahi</u>	e@envir	<u>olab.com</u>	.au		_	
	Prior Storage:		y 🕺 Filde	ge 🗆 Sh	nelved	Do sam	oles contai	n 'potentia	' HBM?	Yes 🛛	No 📋 (If YES, then handle, transport and store in accordance with FPM H/					ith FPM HAZID))	
			pled	Sample Type	Container Type					Analytes								
	Sample ID	Lab ID	Date Sarr	S - soil W - water	G - glass P - plastic	Combo 3	Combo 8	Metals + PAH	Combo 8a	asbestos 40g	AFFA				N	lotes/pres	ervation	
R	52-TPZZO	315						×.	_		X	3						_
AF.	52 TP23 22	16						X			X							
1	52-TP23 03-	1						X	·	-	X							
xt	52 TPZ4 0.7	18						X		·	۲					_		
×.		19					Χ.	- <u>~</u>			X	[_
-	1 12							X			<u> </u>							
TX.	50 ZSAL TC	20					X				V							
X	S7+1075 03-	21	-				Î X				\mathbf{X}							
	52-1866 0.7	22				-	λ				×							
Ĩ N	82-TP26 2	23	_		-		. .	X	_				_					
t	TPZI &	24					Ň.			*	٠ کړ آ						,	
, V	SZ-TP28 00	- 25		•		-		\times .		×!	y /					•		
4	SZ-TP28	26						$-\mathbf{V}$			X							
L L	<u> </u>					-		Ŷ				· ·						
				<u></u> *				_/						<u> </u>				•
	PQL (S) mg/kg				,								ANZEC	C PQLs I	req'd for	all water	analytes 🛛	
	PQL = practical	quantit	ation limit.	If none g	viven, default	to Labor	atory Met	hod Detec	tion Limi		l ah D	enort/Da	forence M	lo: 22	2 - c	2		
	Metals to Analys	Metals to Analyse: 8HM unless specified here:																
	Total number of	fsampl	es in conta	iner:	Reli	nquished	i by:		Transported to laboratory by:				F					
	Send Results to	<u>; D</u>	ouglas Part	ners Pty L	td Add	ress;			Phone: Fax:									
Signed: AMELIA Received by: 5. Bolton Star ECS Syd. Date & Time: 10/12/19 9:55																		

Douglas Partners Geolechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

	Project No:	72505	5.15			Suburb: Randwick					To: EnviroLab				
	Project Name:	POW	Н			Order N	lumber			_		12 /	Ashley Str	eet, Chats	swood 2067
	Project Managè	r;Paul (Gorman			Sample	er:	AD	-		Attn:	Aile	en Hie		· · · · · · · · · · · · · · · · · · ·
	Emails:	paul.	gorman@c	louglaspa	rtners.com	.au; ame	lia.dani(@douglas	partners	s.com.a		à.			
	Date Required:	Vetand	and luxnraro	und	ZDAT			· · · · · · · · · · · · · · · · · · ·			Email:	Ahi	e@envir	olab.com	.au
	Prior Storage:	le Ésk		ge 🗆 Sh	nelved	Do samp	les contai	n 'potential	'HBM?	Yes 🗆	No 🛛	(If YES, the	en handle, t	ransport and	store in accordance with FPM HAZID)
			pled	Sample Type	Container Type	ainer Analytes									
	Sample ID	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 3	Combo 8	Metais + PAH	Combo 8a	asbestos 40g	AFFA				Notes/preservation
FA	52-778 0.0.Z	27	5		;			X			X.	<u> </u>			
X	52-TP8 1.6	28						X			•				Envirolab Services
\mathbf{X}	SL - TP8 25	29						$\left X \right $						ENVIROL	B 12 Ashley St Chatswood NSW 2067
Xg	52-789 8.2	30						Х.			X			Job No	Ph: (02) 9910 6200
Y	SZ-789 9:8	31						X			X	_			
fx.	SZ-TP10 8.1	32					X		<i>-</i>		Ý		_	Time R	ceived: 9155
- Li	52-TP101.5	33						\mathbf{X}						Receive	d by: OD
Ŕ	52-7P10.2-2	34		-							,			Cooling	: Ice/Icepack
×4	52-TAI 82	35		-				X -		,	X			Securi	y. Imacubiokon
KX	52-TPIZ 0.2	36					\mathbf{X}		<u>_</u> _>		X	<u> </u>			
Ìλ	52 =TPIZ 1.0	37					-#~	\checkmark		÷	1. 1	1			
~ ``	52-TP 13:2	38	NR				Ń		_		V.				
X	52 -TP13 0.5	38					ĺχ.				Ň.				
×	52-TP140-2	2.					$\boldsymbol{\lambda}$			×,	1				
K	52-TP14 82	40	iša		_		1	X			/ ·		_		
ĩ	PQL (S) mg/kg							(_		*	<u> </u>		C PQLs r	req'd for all water analytes 🛛
	PQL = practical quantitation limit. If none given, default to Laboratory Method De								tion Limit	_	Lab R	eport/Ref	ference N	10: 22	2763
	Total number of samples in container: Relinquished by Transported to									rted to la					
	Send Results to	; D	ouglas Part	ners Ptv Lt	d Add	ess:	<u>~j.</u>	-				· ····································	Phone	;	Fax:
	Signed: /	MELIA	\	<u> </u>	Received b	y: EC	<u> </u>	.d. 5	Bult.	n Sk		Date & T	ime: 10	/12/19	9:55.
								;		\sim		-			

.

٩

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

[Project No:	Project No: 72505.15						Suburb: Randwick					To: EnviroLab					
ļ	Project Name:	POW	H			Order N	lumber				12 Ashley Street, Chatswood 2067							
	Project Manage	r:Paul C	Gorman			Sample	r:	AD			Attn:	Ailee	en Hie					
	Emails:	paul.	gorman@c	louglaspa	artners.com	<u>.au; ame</u>	lia.dani(@douglas	partners	.com.a								
	Date Required:	stand	and thrin land	und	2DAT						Email: <u>Ahie@envirolab.com.au</u>							
	Prior Storage:			ge 🗆 Sl	nelved	Do samp	les contai	n 'potential	' HBM?	Yes 🛛	No 🗆	(If YES, the	n handle, tra	ansport and	store in ag	cordance w	ith FPM HA	VZID)
1			pled	Sample Type	Container Type					Analytes								
	Sample iD	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 3	Combo 8	Metals + PAH	Combo 8a	asbestos 40g	AFFA				٢	Notes/pres	servation	
×	52-181 8.2	40	•	Ş				×							_			
Х	DD1 2019 1205	41						X		-								
$\{$	52-7PZ 8.1	42					X				\times							
×	52-7PZ 8:1	43					•	\mathbf{X}			,						_	
4	52-7PZ 104	44						X								_		
yof	52 - TP3 0.2	45									\varkappa			-4				
*	52-TP3 0.4	46				,	X											
x	57 -7PC1 6.2	47						\mathbf{x}		X								
¥	52-TP4 9.0	48						\times			5							
10	TS+TB .	50/51	49150					X				f						
×	SZ-TPS 8:6	51					,	×			χ							
KA	52~7868.c	52						X			X							
×	52-TP6 1.1.	53									~~~~							
×X	SZ. TP7 8-2	54					× .	×) KA							
11	SZ-TP7 0.8	SS		$\Box T$				[′ ⊀ _			- P				[
	PQL (S) mg/kg												ANZEC	C PQLs r	req'd for	r all water	r analytes	<u>s 🛛</u>
	PQL = practical	quanti	tation limit.	t to Labor	atory Met	hod Detec	tion Limit		Lab R	eport/Ref	erence N	lo: 70	27 C	2				
	Metals to Analyse: 8HM unless specified here:									<u></u>				~ ~ ~ ~ ~ ~	2+0	<u>ں</u>		_
	Total number o	fsampl	es in conta	iner:	Reli	nquished	by:	1	Transpo	rted to la	poratory	יצט י:	Dh					
	Send Results to): D	ouglas Part	ners Pty L	td Add	ress:			<u> </u>		r	-	Phone:	1.0.1.		Hax:		
	Signed: AMELIA Received by: ELS S. D. S. Bolton Ster Date & Time: 10/12/19 9:55																	

-

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

÷

	Project No:	72505	5.15	<u>_</u>		Suburb		Randwi	 ck		To:	Envi	roLab			
	Project Name:	POW	Η		-	Order N	lumber					12 Ā	shley Str	eet, Chat	swood	2067
	Project Manage	r:Paul G	Forman			Sample	er:	AD			Attn:	Aile	en Hie			
	Emails:	paul.o	jorman@d	louglaspa	rtners.com	.au; ame	lia.dani@	dougla	spartners	.com.ai						_
	Date Required:	stand	and hurn aron		2087						Email: <u>Ahie@envirolab.com.au</u>					
	Prior Storage:	I Esa	/ And	je 🗆 Sh	elved	Do samp	oles contai	n 'potentia	I' HBM?	Yes 🛛	No 🗆	(If YES, the	en handle, tr	ransport and	l store in	accordance with FPM HAZID)
•			oled	Sample Type	Container Type					Analytes						
	Sample ID	Lab ID	Date Samp	S - soil W - water	G - glass P - plastic	Combo 3	Combo 8	Metals + PAH	Combo 8a	asbestos 40g	AFFA	METALS INC. IRON 7 ALUNIMIUM	(FLUEIDE	oil + GREAS	FECAL CLORI- FURM	Notes/preservation
K	52-TP7 12	56		105				K						· · ·		
331	72-7P7 1.8	57.						\sim	a	. 6						
Joler	5.1 7	30	1011 ¹²	Y				X							÷	
32-12	DIN CCU 57	58-	-	N I				,		• <u></u>		X	×-		χ	24124 TUKN JRDAY
	BOI 12019 1710				197 A								····		- <u>-</u>	IL TERAR
Sp .	DU100 00								0			<u> </u>				DI EASE
SB	BUK/2019 1200	<u>60</u>														PLEJVE -
6 P	ROIZONIZOS	6		-												
Ger.	SZ-TPIS 8.2	62			·						Ň					
2H	52-TPS 0.22	63		-					_	£	<u>X</u>					
2Z	52-TP6 0.663	6h			,						χ					
NR.	1952-TP1403	2 R	·							-	- ~					
64	72-TPE-0-3	65	•				2				N				·	
65	52-TAS 25	64									$ \times $		_			<u></u>
66	52-230-3	67	-	· · · · ·							À					
67	52-TP23 0.8-	GB	extra	samp	12						{					
-	PQL (S) mg/kg			i					_			_	ANZEC	C PQLs	req'd fo	or all water analytes 🛛
	PQL = practical	quantit	ation limit.	If none g	iven, default	t to Labora	atory Met	hod Dete	ction Limit		l ah P	eport/Pef	eronco N	lo: 22	<u></u>	· · ·
	Metals to Analyse: 8HM unless specified here:															
	Total number of	sample	es in conta	iner:	Reli	nquished	by:		Transpo	rted to la	boratory	/ by:	Dhana			
	Send Results to		ouglas Parti	ners Pty Li	a Add					1-2-118	<u> </u>	Date & T	ime vo		a	9:55
4	32-7-P24 1-1-	-1-3	69	7	ivereinen n	<u></u>	001,00			18 4	<u>`</u> ،مک	Pare G.I			<u> </u>	
	S2-TP25 no depth 76 gertra scimptes. FPM-ENVID/Form COC 02 69 Rev4/October2016 Rev4/October2016															

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 232763-B

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Amelia Dani
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>72505.16, POWH</u>
Number of Samples	68 Soil, 1 Water
Date samples received	10/12/2019
Date completed instructions received	13/12/2019

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details									
Date results requested by	17/12/2019								
Date of Issue	17/12/2019								
NATA Accreditation Number 2901. This document shall not be reproduced except in full.									
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *								

Results Approved By Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 232763-B Revision No: R00

Page | 1 of 8

PAHs in TCLP (USEPA 1311)					
Our Reference		232763-B-36	232763-B-39	232763-B-51	232763-B-52
Your Reference	UNITS	S2-TP12	S2-TP14	S2-TP5	S2-TP6
Depth		0.0-0.2	0.3-0.5	0.4-0.6	0-0.2
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	16/12/2019	16/12/2019	16/12/2019	16/12/2019
Date analysed	-	16/12/2019	16/12/2019	16/12/2019	16/12/2019
Naphthalene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Acenaphthylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Acenaphthene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Fluorene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Phenanthrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Fluoranthene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Chrysene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001	<0.001	<0.001	<0.001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	106	106	96	94

Metals in TCLP USEPA1311						
Our Reference		232763-B-13	232763-B-17	232763-B-36	232763-B-39	232763-B-51
Your Reference	UNITS	S2-TP21	S2-TP23	S2-TP12	S2-TP14	S2-TP5
Depth		0.3-0.5	0.3-0.5	0.0-0.2	0.3-0.5	0.4-0.6
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/12/2019	16/12/2019	16/12/2019	16/12/2019	16/12/2019
Date analysed	-	16/12/2019	16/12/2019	16/12/2019	16/12/2019	16/12/2019
pH of soil for fluid# determ.	pH units	6.7	8.8	9.5	9.4	7.7
pH of soil TCLP (after HCl)	pH units	1.7	1.8	1.8	2.0	1.7
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	5.0	5.1	5.1	5.5	5.0
Lead in TCLP	mg/L	0.07	0.2	[NA]	[NA]	[NA]

Metals in TCLP USEPA1311			
Our Reference		232763-B-52	232763-B-59
Your Reference	UNITS	S2-TP6	BD2/2019 1210
Depth		0-0.2	
Type of sample		Soil	Soil
Date extracted	-	16/12/2019	16/12/2019
Date analysed	-	16/12/2019	16/12/2019
pH of soil for fluid# determ.	pH units	9.4	8.7
pH of soil TCLP (after HCl)	pH units	1.7	1.7
Extraction fluid used	-	1	1
pH of final Leachate	pH units	5.0	5.0
Lead in TCLP	mg/L	[NA]	0.1

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-012/017	Leachates are extracted with Dichloromethane and analysed by GC-MS and/or GC-MS/MS.

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			16/12/2019	[NT]		[NT]	[NT]	16/12/2019	
Date analysed	-			16/12/2019	[NT]		[NT]	[NT]	16/12/2019	
Naphthalene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	110	
Acenaphthylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluorene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	91	
Phenanthrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	91	
Anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	92	
Pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	97	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	96	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-012/017	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	84	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012/017	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012/017	82	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CONTROL: Metals in TCLP USEPA1311						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	232763-B- 17
Date extracted	-			16/12/2019	13	16/12/2019	16/12/2019		16/12/2019	16/12/2019
Date analysed	-			16/12/2019	13	16/12/2019	16/12/2019		16/12/2019	16/12/2019
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	13	0.07	0.07	0	105	102
Client Reference: 72505.16, POWH

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Nator Guidalinas recommand that Thermotolerant Caliform, Easeal Entergenesi, & E Cali Joyals are loss than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Andrew (Fitzy) Fitzsimons

From: Sent: To: Cc: Subject:

Paul Gorman < Paul.Gorman@douglaspartners.com.au> Friday, 13 December 2019 12:15 PM Amelia Dani Jeremy Faircloth; Samplereceipt RE: Results for Registration 232763 72505.16, POWH

 Follow Up Flag:
 Follow up
 Ret: Locree

 Flag Status:
 Flagged
 TAT: 2 days

 2 days
 Dwe: 17/12/19

 On 13 Dec. 2019 12:11, Amelia Dani < Amelia.Dani@douglaspartners.com.au> wrote:

 Paul what TAT do we want on these?

Jeremy,

Can we please get TCLP for:

B(a)P

- 5 S2-TP#0.4-0.6 - 51
- S2-TP6 0-0.2 52 .
- S2-TP12 0-0.2 36
- S2-TP14 0.3-0.5 39 .

Lead:

- BD2/20191210 59 •
- S2-TP21 0.3-0.5 13
- S2-TP23 0.3-0.5 -1Z

Regards,

Amelia Dani | Graduate Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | E: Amelia.Dani@douglaspartners.com.au

FINANCIAI REVIEW **CLIENT CHOICE AWARDS 2019**

WINNER

beaton

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

From: Jeremy Faircloth <JFaircloth@envirolab.com.au>

Sent: Thursday, 12 December 2019 5:17 PM

To: Amelia Dani < Amelia. Dani@douglaspartners.com.au>; Paul Gorman < Paul. Gorman@douglaspartners.com.au> Subject: Results for Registration 232763 72505.16, POWH

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 249420

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman, Joel Hall
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.07, RCR Hospital Road, Randwick
Number of Samples	11 Soil
Date samples received	20/08/2020
Date completed instructions received	20/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 27/08/2020

 Date of Issue
 27/08/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Lucy Zhu, Asbestos Supervisor Phalak Inthakesone, Organics Development Manager, Sydney Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1	<1	<1
chloroform	mg/kg	<1	<1	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1	<1	<1

VOCs in soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
bromoform	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
styrene	mg/kg	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1	<1	<1
Surrogate Dibromofluorometha	%	99	97	100	99	100
Surrogate aaa-Trifluorotoluene	%	87	93	89	90	87
<i>Surrogate</i> Toluene-d ₈	%	98	98	98	98	97
Surrogate 4-Bromofluorobenzene	%	105	105	105	106	105

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	87	93	89	79	81
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		249420-6	249420-7	249420-8	249420-9	249420-10
Your Reference	UNITS	BH604	BH605	BH605	BD1/20200819	Trip Spike
Depth		1.0-1.2	0.4-0.5	0.9-1.1	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	[NA]
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	[NA]
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	99%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	104%
Ethylbenzene	mg/kg	<1	<1	<1	<1	103%

mg/kg

mg/kg

mg/kg

mg/kg

%

<2

<1

<1

<3

90

<2

<1

<1

<3

87

<2

<1

<1

<3

93

m+p-xylene

naphthalene

Total +ve Xylenes

Surrogate aaa-Trifluorotoluene

o-Xylene

105%

103%

92

<2

<1

<1

<3

91

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		249420-11
Your Reference	UNITS	Trip Blank
Depth		-
Type of sample		Soil
Date Sampled		19/08/2020
Date extracted	-	21/08/2020
Date analysed	-	24/08/2020
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	82

svTRH (C10-C40) in Soil							
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5	
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604	
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	Soil	
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020	
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020	
Date analysed	-	22/08/2020	22/08/2020	22/08/2020	22/08/2020	22/08/2020	
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50	
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100	
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100	
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50	
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100	
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100	
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50	
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50	
Surrogate o-Terphenyl	%	75	83	84	81	84	
svTRH (C10-C40) in Soil							

Our Reference		249420-6	249420-7	249420-8	249420-9
Your Reference	UNITS	BH604	BH605	BH605	BD1/20200819
Depth		1.0-1.2	0.4-0.5	0.9-1.1	-
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	22/08/2020	22/08/2020	22/08/2020	22/08/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	130	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	140	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	240	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	110	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	270	<50	<50	<50
Total +ve TRH (>C10-C40)	mg/kg	350	<50	<50	<50
Surrogate o-Terphenyl	%	90	82	81	82

PAHs in Soil						
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	0.1	1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Fluoranthene	mg/kg	<0.1	0.2	0.3	0.3	1.0
Pyrene	mg/kg	0.1	0.2	0.3	0.4	1.0
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	0.2	0.4
Chrysene	mg/kg	<0.1	0.1	0.2	0.2	0.5
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	0.4	0.6
Benzo(a)pyrene	mg/kg	<0.05	0.09	0.2	0.2	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	0.2	0.2
Total +ve PAH's	mg/kg	0.1	0.53	1.5	2.2	5.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	0.6
Surrogate p-Terphenyl-d14	%	107	99	104	107	107

PAHs in Soil					
Our Reference		249420-6	249420-7	249420-8	249420-9
Your Reference	UNITS	BH604	BH605	BH605	BD1/20200819
Depth		1.0-1.2	0.4-0.5	0.9-1.1	-
Type of sample		Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.4	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.4	<0.1	0.1	<0.1
Anthracene	mg/kg	0.6	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	4.9	<0.1	0.3	0.1
Pyrene	mg/kg	5.6	<0.1	0.3	0.1
Benzo(a)anthracene	mg/kg	3.2	<0.1	0.1	<0.1
Chrysene	mg/kg	2.8	<0.1	0.2	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	4.6	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	3.3	<0.05	0.2	0.07
Indeno(1,2,3-c,d)pyrene	mg/kg	1.3	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.3	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	1.7	<0.1	0.2	<0.1
Total +ve PAH's	mg/kg	30	<0.05	1.8	0.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.6	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	107	108	104	109

Organochlorine Pesticides in soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	106	110	112	115

Organophosphorus Pesticides in Soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	106	110	112	115

PCBs in Soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date extracted	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	111	106	110	112	115

Acid Extractable metals in soil						
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date prepared	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.9	<0.4
Chromium	mg/kg	27	3	24	5	6
Copper	mg/kg	7	3	15	20	6
Lead	mg/kg	23	16	35	70	39
Mercury	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Nickel	mg/kg	22	2	27	14	6
Zinc	mg/kg	22	21	55	410	62

Acid Extractable metals in soil						
Our Reference		249420-6	249420-7	249420-8	249420-9	249420-12
Your Reference	UNITS	BH604	BH605	BH605	BD1/20200819	BH601 - [TRIPLICATE]
Depth		1.0-1.2	0.4-0.5	0.9-1.1	-	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date prepared	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	43	3	35	32
Copper	mg/kg	26	15	26	50	8
Lead	mg/kg	150	24	56	17	10
Mercury	mg/kg	0.1	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	6	35	2	34	27
Zinc	mg/kg	240	53	130	52	22

Misc Soil - Inorg					_	
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date prepared	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5	<5	<5

Asbestos ID - soils						
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Sample mass tested	g	Approx. 25g	Approx. 25g	Approx. 30g	Approx. 25g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Asbestos comments	-	NO	NO	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils				
Our Reference		249420-6	249420-7	249420-8
Your Reference	UNITS	BH604	BH605	BH605
Depth		1.0-1.2	0.4-0.5	0.9-1.1
Type of sample		Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020
Sample mass tested	g	Approx. 25g	Approx. 30g	Approx. 25g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		detected	detected	detected
Asbestos comments	-	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Moisture						
Our Reference		249420-1	249420-2	249420-3	249420-4	249420-5
Your Reference	UNITS	BH601	BH602	BH603	BH603	BH604
Depth		0.4-0.5	0.4-0.6	0.5-0.7	0.8-1.0	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date prepared	-	21/08/2020	21/08/2020	21/08/2020	21/08/2020	21/08/2020
Date analysed	-	24/08/2020	24/08/2020	24/08/2020	24/08/2020	24/08/2020
Moisture	%	15	10	9.0	12	6.7
Moisture						
Our Reference		249420-6	249420-7	249420-8	249420-9	
Your Reference	UNITS	BH604	BH605	BH605	BD1/20200819	
Depth		10-12	0 4-0 5	0 9-1 1		
			0.1 0.0	0.0 1.1		
Type of sample		Soil	Soil	Soil	Soil	
Type of sample Date Sampled		Soil 19/08/2020	Soil 19/08/2020	Soil 19/08/2020	Soil 19/08/2020	
Type of sample Date Sampled Date prepared	-	Soil 19/08/2020 21/08/2020	Soil 19/08/2020 21/08/2020	Soil 19/08/2020 21/08/2020	Soil 19/08/2020 21/08/2020	
Type of sample Date Sampled Date prepared Date analysed	-	Soil 19/08/2020 21/08/2020 24/08/2020	Soil 19/08/2020 21/08/2020 24/08/2020	Soil 19/08/2020 21/08/2020 24/08/2020	Soil 19/08/2020 21/08/2020 24/08/2020	

Miscellaneous Inorg - soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date prepared	-	26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
Date analysed	-	26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
Ammonia as N in soil	mg/kg	<0.5	0.5	<0.5	0.7	<0.5

Explosives in Soil						
Our Reference		249420-1	249420-2	249420-3	249420-6	249420-7
Your Reference	UNITS	BH601	BH602	BH603	BH604	BH605
Depth		0.4-0.5	0.4-0.6	0.5-0.7	1.0-1.2	0.4-0.5
Type of sample		Soil	Soil	Soil	Soil	Soil
Date Sampled		19/08/2020	19/08/2020	19/08/2020	19/08/2020	19/08/2020
Date Extracted	-	26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
Date analysed	-	26/08/2020	26/08/2020	26/08/2020	26/08/2020	26/08/2020
НМХ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
RDX	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
1,3,5-Trinitrobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
1,3-Dinitrobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Tetryl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,6-Trinitrotoluene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
4-&2-AM-DNT(Isomeric Mixture)	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
2,4-Dinitrotoluene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,6-Dinitrotoluene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrobenzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2-Nitrotoluene & 4-Nitrotoluene	mg/kg	<5	<5	<5	<5	<5
3-Nitrotoluene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nitroglycerine	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
PETN	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
3,5-Dinitroaniline	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate (Dinitrobenzene)	%	90	92	97	88	94

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with acetonitrile. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MSMS.

QUALIT	TY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020
Date analysed	-			24/08/2020	1	24/08/2020	24/08/2020		24/08/2020	24/08/2020
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Vinyl Chloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Bromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Chloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Trichlorofluoromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-Dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	99	70
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chloroform	mg/kg	1	Org-023	<1	1	<1	<1	0	112	78
2,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	104	73
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	101	72
1,1-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Cyclohexane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
carbon tetrachloride	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
dibromomethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
trichloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	108	77
bromodichloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	107	77
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	[NT]	[NT]
1,3-dichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
dibromochloromethane	mg/kg	1	Org-023	<1	1	<1	<1	0	106	75
1,2-dibromoethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
tetrachloroethene	mg/kg	1	Org-023	<1	1	<1	<1	0	102	72
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
chlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromoform	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	[NT]	[NT]
styrene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]

QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	98	1	99	96	3	100	101
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	87	91	4	104	92
Surrogate Toluene-d ₈	%		Org-023	97	1	98	100	2	102	100
Surrogate 4-Bromofluorobenzene	%		Org-023	104	1	105	110	5	106	107

QUALIT	TY CONTRC	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	
Date analysed	-			[NT]	7	24/08/2020	24/08/2020		[NT]	
Dichlorodifluoromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Chloromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Vinyl Chloride	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Bromomethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Chloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Trichlorofluoromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1-Dichloroethene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
trans-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1-dichloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
cis-1,2-dichloroethene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
bromochloromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
chloroform	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
2,2-dichloropropane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,2-dichloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1,1-trichloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1-dichloropropene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Cyclohexane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
carbon tetrachloride	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Benzene	mg/kg	0.2	Org-023	[NT]	7	<0.2	<0.2	0	[NT]	
dibromomethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,2-dichloropropane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
trichloroethene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
bromodichloromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
trans-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
cis-1,3-dichloropropene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1,2-trichloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Toluene	mg/kg	0.5	Org-023	[NT]	7	<0.5	<0.5	0	[NT]	
1,3-dichloropropane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
dibromochloromethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,2-dibromoethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
tetrachloroethene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
chlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
Ethylbenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
bromoform	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
m+p-xylene	mg/kg	2	Org-023	[NT]	7	<2	<2	0	[NT]	
styrene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	

QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	[NT]	7	100	97	3	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	7	87	94	8	[NT]	[NT]
Surrogate Toluene-d ₈	%		Org-023	[NT]	7	97	99	2	[NT]	[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	[NT]	7	105	106	1	[NT]	[NT]

QUALITY CONT	QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2	
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Date analysed	-			24/08/2020	1	24/08/2020	24/08/2020		24/08/2020	24/08/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	117	84	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	117	84	
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	104	74	
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	116	82	
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	123	88	
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	122	87	
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	127	90	
naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	101	1	87	91	4	104	92	

QUALITY CONT			Du	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-			[NT]	7	24/08/2020	24/08/2020		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	7	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	7	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	7	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	7	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	7	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
naphthalene	mg/kg	1	Org-023	[NT]	7	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	7	87	94	8	[NT]	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil		Duplicate Spi					pike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2	
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Date analysed	-			22/08/2020	1	22/08/2020	22/08/2020		22/08/2020	22/08/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	102	91	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	78	74	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	77	126	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	102	91	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	78	74	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	77	126	
Surrogate o-Terphenyl	%		Org-020	86	1	75	83	10	126	83	

QUALITY CO			Du	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-			[NT]	7	22/08/2020	22/08/2020		[NT]	[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	7	<50	<50	0	[NT]	[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	7	<100	<100	0	[NT]	[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	7	<100	<100	0	[NT]	[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	7	<50	<50	0	[NT]	[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	7	<100	<100	0	[NT]	[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	7	<100	<100	0	[NT]	[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	7	82	84	2	[NT]	[NT]

QUALIT	QUALITY CONTROL: PAHs in Soil						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2	
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	92	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	87	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	98	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	95	#	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.3	100	91	#	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	0.3	100	88	#	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.1	0	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	0.2	67	96	#	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	0.1	67	86	#	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	109	1	107	102	5	107	101	

QUALITY CONTROL: PAHs in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	0.1	0	[NT]	[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	0.2	67	[NT]	[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	0.2	67	[NT]	[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	0.1	0	[NT]	[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	7	<0.2	0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	7	<0.05	0.1	67	[NT]	[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	7	108	104	4	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	83
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	81
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	77
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	88
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	84
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	84
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	81
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	86
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	79
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	78
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	107	1	111	108	3	109	104

QUALITY CONTR		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-				7	21/08/2020	21/08/2020		[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
НСВ	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025		7	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	7	115	108	6	[NT]	[NT]

QUALITY CONTRO	QUALITY CONTROL: Organophosphorus Pesticides in Soi						Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2	
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	104	80	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	82	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	115	101	
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	114	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	93	91	
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	114	100	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	103	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	107	1	111	108	3	109	104	

QUALITY CONTRO	QUALITY CONTROL: Organophosphorus Pesticides in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Malathion	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	7	115	108	6	[NT]	[NT]

QUALIT	Y CONTRO	L: PCBs i	in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2	
Date extracted	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	98	88	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	107	1	111	108	3	109	104	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Date analysed	-			[NT]	7	21/08/2020	21/08/2020		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	7	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	7	115	108	6	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2
Date prepared	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	21/08/2020
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	96	105
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	98	99
Chromium	mg/kg	1	Metals-020	<1	1	27	25	8	96	106
Copper	mg/kg	1	Metals-020	<1	1	7	8	13	98	108
Lead	mg/kg	1	Metals-020	<1	1	23	11	71	97	95
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	98	85
Nickel	mg/kg	1	Metals-020	<1	1	22	27	20	98	107
Zinc	mg/kg	1	Metals-020	<1	1	22	21	5	93	94

QUALITY CONT	ROL: Acid E	Extractable	e metals in soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	7	21/08/2020	21/08/2020		[NT]	
Date analysed	-			[NT]	7	21/08/2020	21/08/2020		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	7	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	7	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	7	43	35	21	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	7	15	13	14	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	7	24	26	8	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	7	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	7	35	32	9	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	7	53	50	6	[NT]	[NT]

QUALITY	QUALITY CONTROL: Misc Soil - Inorg							Duplicate				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]		
Date prepared	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	[NT]		
Date analysed	-			21/08/2020	1	21/08/2020	21/08/2020		21/08/2020	[NT]		
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	1	<5	<5	0	99	[NT]		
QUALITY CO	NTROL: Mise	cellaneou		Du	Spike Recovery %							
----------------------	-------------	-----------	-----------	------------	------------------	------	------	------	------------	------		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]		
Date prepared	-			26/08/2020	[NT]		[NT]	[NT]	26/08/2020	[NT]		
Date analysed	-			26/08/2020	[NT]		[NT]	[NT]	26/08/2020	[NT]		
Ammonia as N in soil	mg/kg	0.5	Inorg-057	<0.5	[NT]	[NT]	[NT]	[NT]	98	[NT]		

QUALITY		Du	plicate		Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	249420-2
Date Extracted	-			26/08/2020	1	26/08/2020	26/08/2020		26/08/2020	26/08/2020
Date analysed	-			26/08/2020	1	26/08/2020	26/08/2020		26/08/2020	26/08/2020
НМХ	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	114	110
RDX	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	100	97
1,3,5-Trinitrobenzene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	109	110
1,3-Dinitrobenzene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	129	125
Tetryl	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	107	105
2,4,6-Trinitrotoluene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	106	106
4-&2-AM-DNT(Isomeric Mixture)	mg/kg	0.2	Org-029	<0.2	1	<0.2	<0.2	0	87	82
2,4-Dinitrotoluene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	100	100
2,6-Dinitrotoluene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	94	89
Nitrobenzene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	100	95
2-Nitrotoluene & 4-Nitrotoluene	mg/kg	5	Org-029	<5	1	<5	<5	0	99	96
3-Nitrotoluene	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	91	93
Nitroglycerine	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	115	110
PETN	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	97	96
3,5-Dinitroaniline	mg/kg	0.1	Org-029	<0.1	1	<0.1	<0.1	0	89	88
Surrogate (Dinitrobenzene)	%		Org-029	92	1	90	89	1	100	95

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

PAHs in Soil - # Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 249420-2 has caused interference.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteria has been exceeded for 249420-1 for Pb. Therefore a triplicate result has been issued as laboratory sample number 249420-12.

Asbestos: A portion of the supplied samples were sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples requested for asbestos testing were sub-sampled from jars

provided by the client.

Douglas Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project Name: RCR Hospital Road Order Number 12 Ashley Street, Chatswood, NSW 2067 Project Manager: Paul Gorman Sampler: JJH Ath:: Atheen Hile	Project No:		72505.19					Suburb: Randwick					To: Envirolab Services Pty Ltd				
Project Manager: Paul Gorman Bampler: JH Attn: Allen Allen Emails: joel innes-hell; paul jorman@doughasphares.com.au Phone: Phone	Project Name):	RCR Hospital Road Order Number						·	: .		12 A	shley Str	reet, Chat	swood, NSW 2067		
Emails: joid/ames-fail: paul gorman@doublespantness.com.au Phone: Date Required: Same fay 24 hours: T2 hours: Standard if V: Email: Ahle@enrytolab.com.au Prior Storage: Existy Fidge Sample Container Do samples contain potential HBM? No C (If YES, then handle, transport and alore in accordance with FPM HA2ID) Sample Depth Lab Sample Container Analytes Notes/preservation ID Range ID Sample Container Sample Container Analytes BH601 0.4005 I 198.20 S G x x BH602 0.4-0.6 Z 198.20 S G x x x BH603 0.5-0.7 J 198.20 S G x x x Enditional transmer BH604 0.5-0.7 J 198.20 S G x x X Enditional transmer BH605 0.4-1.0 Y 198.20 S G X X Enditional transmer Multishi transmer BH604 <td< td=""><td>Project Mana</td><td>ger:</td><td>Paul</td><td>Gorman</td><td></td><td></td><td>Sample</td><td>er:</td><td>JJH</td><td></td><td></td><td>Attn:</td><td>Ailee</td><td>en Hie</td><td></td><td></td></td<>	Project Mana	ger:	Paul	Gorman			Sample	er:	JJH			Attn:	Ailee	en Hie			
Date Required: Same fay = 24 hours = 72	Emails:		joel.jar	joel.james-hall; paul.gorman@douglaspartners.com.au													
Prior Storage: If Esky If Fidge Sample Do samples contain potential* HBM? No. [f" (If YES, then handle, transport and store in accordance with FPM HAZID) Sample Depth Lab Sample Container Type Analytes ID Range ID ID Sample Container Analytes No (f" (If YES, then handle, transport and store in accordance with FPM HAZID) BH601 0.4/0.5 I 19.8.20 S G x x X Sample Notes/preservation BH602 0.4-0.5 I 19.8.20 S G x x x Image: Ima	Date Require	d: 🔶	Same	¢lay □	24 hours	s ⊡' <u>;</u> 48	hours 🗆	<u>72 h</u>	ours 🗆	Stand	lard 🗹	Email:	Ahie	@envir	<u>olab.com</u>	. <u>au</u>	
Sample ID Depth ID Lab ID Sample ID Sa	Prior Storage	e: 🗹 Es	sky 🗹	Fridge 🗆	Shelve	d	Do samp	oles contair	n 'potential	'HBM?	No 🗗 (If YES, then	handle, tra	nsport and	store in acco	ordance with FPM HAZID)	
Sample ID Depth Range Lab ID End Solution Solution Solution Solution Solution Solution Solution Solution Solution Notes/preservation BH601 0.40.0 Solution 1 19.8.20 S G x </td <td></td> <td></td> <td></td> <td>pled</td> <td>Sample Type</td> <td>Container Type</td> <td></td> <td></td> <td></td> <td>·</td> <td>Analytes</td> <td></td> <td></td> <td></td> <td>·</td> <td></td>				pled	Sample Type	Container Type				·	Analytes				·		
BH601 0.40.6 I 19.8.20 S G x x x BH602 0.40.6 - Instruction Instruction Instruction Instruction Instruction Instruction BH603 0.50.7 3 19.8.20 S G x x x Instruction BH603 0.8.1.0 Y 19.8.20 S G x x X Instruction BH603 0.8.1.0 Y 19.8.20 S G x X Instruction Instruc	Sample ID	Depth Range	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3a	NOC	Ammonia + Explosives	ВТЕХ	Combo 3		· · ·		Notes/preservation	
BH602 0.4-0.6 Z 19.8.20 S G x x x x BH603 0.5-0.7 3 19.8.20 S G x x x x x BH603 0.8-1.0 Y 19.8.20 S G x x x x x BH604 0.5-0.7 5 19.8.20 S G x	BH601	0.4-0.5		19.8.20	S	G	X		X '3	· x ····		•••		<u> </u>		· · ·	
BH603 0.5-0.7 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ <th \$="" \$<="" <th="" td=""><td>BH602</td><td>0.4-0.6</td><td>2</td><td>19.8.20</td><td>S</td><td>G</td><td>X</td><td>4</td><td>x</td><td>X</td><td>•</td><td>:</td><td></td><td>· .</td><td></td><td></td></th>	<td>BH602</td> <td>0.4-0.6</td> <td>2</td> <td>19.8.20</td> <td>S</td> <td>G</td> <td>X</td> <td>4</td> <td>x</td> <td>X</td> <td>•</td> <td>:</td> <td></td> <td>· .</td> <td></td> <td></td>	BH602	0.4-0.6	2	19.8.20	S	G	X	4	x	X	•	:		· .		
BH603 0.8.1.0 4 19.8.20 S G x Image: Constraint of the second	BH603	0.5-0.7	3	19.8.20	S	G	x		x	X							
BH604 0.5-0.7 5 19.8.20 S G x Ph: (2) 3970 6220 BH604 1.0-1.2 6 19.8.20 S G x x Date Received. 24/9 4.2 G BH605 0.4-0.5 7 19.8.20 S G x x Date Received. 24/9 4.2 G BH605 0.4-0.5 7 19.8.20 S G x x Time Received. 24/9 4.2 G BH605 0.9-1.1 9 19.8.20 S G x Time Received. 24/9 4.2 G BD1/20200819 - 7 19.8.20 S G x Received. 24/9 G/12/7 Trip Spike - 1/6 19.8.20 S G x Codimic Ted/cepted Trip Blank - 1/1 19.8.20 S G X Security: Intact/Broket More Trip Blank - 1/2 19.8.20 S G X Security: Intact/Broket More PQL (S) mg/k - - - - - - - PQL (S) mg/k - -	BH603	0.8-1.0	Ÿ	19.8.20	S	G		• x			-				<u>ີ</u> ຄາ	VIROLAB 12 Ashley St Chatswood NSW 2007	
BH604 1.0-1.2 6 19.8.20 S G x x x x x Date Received: 2.4942.6 BH605 0.4-0.5 7 19.8.20 S G x x x Date Received: 2.4942.6 BH605 0.4-0.5 7 19.8.20 S G x x The Received: 2.55 BH605 0.9-1.1 8 19.8.20 S G x Reseived By: 4.2 en u u BD1/20200819 - 7 19.8.20 S G x Coding: Codecaped u	BH604	0.5-0.7	5	19.8.20	S	G		x	Ĵ :					· ·		Ph: (02) 9910 6200	
BH605 0.4-0.5 7 19.8.20 S G x x Date Received: 20/6120 BH605 0.9-1.1 Ø 19.8.20 S G x Reference: 20/6120 BD1/20200819 - Ø 19.8.20 S G x Reference: 20/6120 BD1/20200819 - 9 19.8.20 S G x Reference: 20/6120 Trip Spike - 1/6 19.8.20 S G x Codima: Testegas Trip Spike - 1/6 19.8.20 S G x Security: Intact/Broket/None Trip Blank - 1/2 19.8.20 S G x Security: Intact/Broket/None Trip Blank - 1/2 19.8.20 S G x Security: Intact/Broket/None Trip Blank - 1/2 19.8.20 S G x Security: Intact/Broket/None PQL (S) mg/H - - - - - - - PQL = practical quantitation limit. If none given, default to Laboratory Met	BH604	1.0-1.2	6	19.8.20	S	G	x		X	X			_		<u> </u>	249420	
BH605 0.9-1.1 Ø 19.8.20 S G x Received By: us (en with the contraction of the contract	BH605	0.4-0.5	7	19.8.20	S	G	X		X	X		,			Dat Tim	e Received: 20/8720	
BD1/20200819 - 1 19.8.20 S G × Coding: IceRcepact Trip Spike - 1/6 19.8.20 S G × Sedurity: Intact/Broket/None Trip Blank - 1(19.8.20 S G × Sedurity: Intact/Broket/None Trip Blank - 1(19.8.20 S G × Sedurity: Intact/Broket/None Trip Blank - 1(19.8.20 S G × Sedurity: Intact/Broket/None Metals to Analyse: 8HM unless specified here: - - - - - -	BH605	0.9-1.1	8	19.8.20	S.	G		x		-	••• •		-		Re	eived By: Helen ~	
Trip Spike - 16 19.8.20 S G x Sedurity: Intact/Broker Non Trip Blank - 1 19.8.20 S G x - - Trip Blank - 1 19.8.20 S G x - - Image: Sedurity: Intact/Broker Non - x - - - - Image: Sedurity: Intact/Broker Non - - - - - - Image: Sedurity: Intact/Broker Non - - - - - - - Image: Sedurity: Intact/Broker Non - - - - - - - Image: Sedurity: Intact/Broker Non - - - - - - - Image: Sedurity: Intact/Broker Non -	BD1/20200819	-	9	19.8.20	S	G				· .		x			ler Có	ling: icelcepack	
Trip Blank I 19.8.20 S G x a a a Image: Second s	Trip Spike		16	19.8.20	S	G		· · · · ·	ا ج ب خ		. x				Sec	urity: Intact/Broken/None	
PQL (S) mg/k ANZECC PQLs req'd for all water analytes PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit ANZECC PQLs req'd for all water analytes Metals to Analyse: 8HM unless specified here: Analyse: 8HM unless specified here:	Trip Blank	-		19.8.20	S	G	······				X	· · · · ·	· · · ·				
PQL (S) mg/k PQL (S) mg/k PQL (S) mg/k PQL spractical quantitation limit. If none given, default to Laboratory Method Detection Limit Metals to Analyse: 8HM unless specified here:					•• •		· ·				.:	*.	:		· · · ·	· · · · · · · · · · · · · · · · · · ·	
PQL (S) mg/k ANZECC PQLs req'd for all water analytes PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit ANZECC PQLs req'd for all water analytes Metals to Analyse: 8HM unless specified here: Lab Report/Reference No: 249420	·			· · ·							··.						
PQL (S) mg/k ANZECC PQLs req'd for all water analytes PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No: 249420 Metals to Analyse: 8HM unless specified here: Comparison of the second seco									•				· · ·				
PQL (S) mg/k ANZECC PQLs req'd for all water analytes PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No: 249420 Metals to Analyse: 8HM unless specified here: Comparison of the second seco	· · · · · · · · · · · · · · · · · · ·			· · · ·		,	· .										
PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No: 249420 Metals to Analyse: 8HM unless specified here: Lab Report/Reference No: 249420	PQL (S) mg/k ANZECC PQLs req'd for all water analytes 🗆																
	PQL = practical quantitation limit. If none given, default to Laboratory Method Detection Limit Lab Report/Reference No: 249420 Metals to Analyse: 8HM unless specified here: Lab Report/Reference No: 249420																
Total number of samples in container: Relinquished by: Transported to laboratory by:	Total numbe	r of sam	ples in	container:	•	Relir	nquished	کی: l by:	$n \perp$	Transpo	orted to la	boratory	v by:				
Send Results to: Douglas Partners Pty Ltd Address: Phone: Fax:	Send Results	s to:	Do	uglas Partn	ers Pty Lt	d Add	ress		·			· .		Phone	<u> </u>	Fax:	
Signed: The Signed Received by: The Date & Time: 20/8/20 1256	Signed:		\sim		· :	Received	by:	C		 			Date & 1	ime: Z	25/8	720 1256	

Page 1 of 1

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman, Joel Hall

Sample Login Details	
Your reference	72505.07, RCR Hospital Road, Randwick
Envirolab Reference	249420
Date Sample Received	20/08/2020
Date Instructions Received	20/08/2020
Date Results Expected to be Reported	27/08/2020

Sample Condition							
Samples received in appropriate condition for analysis							
No. of Samples Provided	11 Soil						
Turnaround Time Requested	Standard						
Temperature on Receipt (°C)	8.4						
Cooling Method	Ice Pack						
Sampling Date Provided	YES						

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Ammonia as N in soil	Explosives in Soil
BH601-0.4-0.5	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
BH602-0.4-0.6	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
BH603-0.5-0.7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BH603-0.8-1.0		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		
BH604-0.5-0.7		✓	\checkmark	\checkmark				\checkmark		\checkmark		
BH604-1.0-1.2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BH605-0.4-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark
BH605-0.9-1.1		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark		
BD1/20200819		\checkmark	\checkmark	\checkmark				\checkmark				
Trip Spike		\checkmark										
Trip Blank		✓										

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 249420-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.07, RCR Hospital Road, Randwick
Number of Samples	11 Soil
Date samples received	20/08/2020
Date completed instructions received	03/08/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	03/09/2020	
Date of Issue	02/09/2020	
NATA Accreditation Number 2901. This document shall not be reproduced except in full.		
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 249420-A Revision No: R00

Page | 1 of 8

PAHs in TCLP (USEPA 1311)		
Our Reference		249420-A-6
Your Reference	UNITS	BH604
Depth		1.0-1.2
Type of sample		Soil
Date Sampled		19/08/2020
Date extracted	-	01/09/2020
Date analysed	-	01/09/2020
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	84

Metals in TCLP USEPA1311		
Our Reference		249420-A-6
Your Reference	UNITS	BH604
Depth		1.0-1.2
Type of sample		Soil
Date Sampled		19/08/2020
Date extracted	-	31/08/2020
Date analysed	-	31/08/2020
pH of soil for fluid# determ.	pH units	8.2
pH of soil TCLP (after HCl)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	4.9
Lead in TCLP	mg/L	0.3

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Metals-020 ICP-AES	Determination of various metals by ICP-AES.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)				Duplicate Spike Recov				covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			01/09/2020	[NT]		[NT]	[NT]	01/09/2020	
Date analysed	-			01/09/2020	[NT]		[NT]	[NT]	01/09/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	83	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	106	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	98	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	97	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	102	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	92	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	87	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	99	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALITY CON	QUALITY CONTROL: Metals in TCLP USEPA1311			Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			31/08/2020	[NT]		[NT]	[NT]	31/08/2020	[NT]
Date analysed	-			31/08/2020	[NT]		[NT]	[NT]	31/08/2020	[NT]
Lead in TCLP	mg/L	0.03	Metals-020 ICP- AES	<0.03	[NT]		[NT]	[NT]	97	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

are similar to the analyte of interest, however are not expected to be found in real samples.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Ming To

From:	Nancy Zhang			
Sent:	Thursday, 27 August 202	20 1:18 PM		
То:	Ming To			
Ćc:	Samplereceipt Distribution Sydney			
Subject:	FW: Results for Registration 249420 72505.07, RCR Hospital Road, Randwick			
Follow Up Flag:	Follow up	D. C. DUGUZO-A		
Flag Status:	Flagged	TAT: Standard.		

Que: 03/09/2020

MT.

A job, please.

Kind Regards,

Nancy Zhang | Laboratory Manager, Sydney | Envirolab Services Pty Ltd

Celebrating 15 years of Great Science. Great Service. 12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201 E nzhang@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the</u> Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Paul Gorman <Paul.Gorman@douglaspartners.com.au> Sent: Thursday, 27 August 2020 1:17 PM To: Nancy Zhang <NZhang@envirolab.com.au>; Joel James-Hall <joel.james-hall@douglaspartners.com.au> Subject: RE: Results for Registration 249420 72505.07, RCR Hospital Road, Randwick

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thanks Nancy,

Can you please schedule TCLP testing (standard turnaround) on the following:

b) BH604/1.0-1.2 lead, PAH

Thanks

CERTIFICATE OF ANALYSIS 250248

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.19, RCR HRL Randwick
Number of Samples	7 SOIL
Date samples received	02/09/2020
Date completed instructions received	02/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 09/09/2020

 Date of Issue
 09/09/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil	_	_	_	
Our Reference		250248-1	250248-3	250248-5
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	0.5	0.5
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	04/09/2020	04/09/2020	04/09/2020
Dichlorodifluoromethane	mg/kg	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1

VOCs in soil				
Our Reference		250248-1	250248-3	250248-5
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	0.5	0.5
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Ethylbenzene	mg/kg	<1	<1	<1
bromoform	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
styrene	mg/kg	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1
o-Xylene	mg/kg	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluorometha	%	94	96	109
Surrogate aaa-Trifluorotoluene	%	110	108	111
<i>Surrogate</i> Toluene-d ₈	%	100	102	101
Surrogate 4-Bromofluorobenzene	%	122	114	128

vTRH(C6-C10)/BTEXN in Soil	vTRH(C6-C10)/BTEXN in Soil							
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5		
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608		
Depth		0.5	1.0	0.5	1.0	0.5		
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020		
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL		
Date extracted	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020		
Date analysed	-	04/09/2020	04/09/2020	04/09/2020	04/09/2020	04/09/2020		
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25		
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25		
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25		
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2		
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5		
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1		
m+p-xylene	mg/kg	<2	<2	<2	<2	<2		
o-Xylene	mg/kg	<1	<1	<1	<1	<1		
naphthalene	mg/kg	<1	<1	<1	<1	<1		
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3		
Surrogate aaa-Trifluorotoluene	%	110	106	108	92	111		

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020
Date analysed	-	04/09/2020	04/09/2020
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	97	98

svTRH (C10-C40) in Soil	svTRH (C10-C40) in Soil							
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5		
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608		
Depth		0.5	1.0	0.5	1.0	0.5		
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020		
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL		
Date extracted	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020		
Date analysed	-	04/09/2020	04/09/2020	04/09/2020	04/09/2020	04/09/2020		
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50		
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100		
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100		
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50		
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100		
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100		
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50		
Surrogate o-Terphenyl	%	75	82	70	74	88		

SVIRH (C10-C40) IN SOII			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020
Date analysed	-	04/09/2020	04/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	75	72

PAHs in Soil						
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608
Depth		0.5	1.0	0.5	1.0	0.5
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	2.2	<0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	0.7	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	7.3	0.1	<0.1	<0.1	0.6
Pyrene	mg/kg	6.6	0.1	<0.1	<0.1	0.7
Benzo(a)anthracene	mg/kg	4.8	<0.1	<0.1	<0.1	0.4
Chrysene	mg/kg	3.3	<0.1	<0.1	<0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	5.4	<0.2	<0.2	<0.2	1
Benzo(a)pyrene	mg/kg	3.4	0.06	<0.05	<0.05	0.68
Indeno(1,2,3-c,d)pyrene	mg/kg	1.6	<0.1	<0.1	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	0.3	<0.1	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	1.9	<0.1	<0.1	<0.1	0.6
Total +ve PAH's	mg/kg	38	0.3	<0.05	<0.05	5.1
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.9	<0.5	<0.5	<0.5	1
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.9	<0.5	<0.5	<0.5	1
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.9	<0.5	<0.5	<0.5	1
Surrogate p-Terphenyl-d14	%	124	120	119	124	127

PAHs in Soil			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.2	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.7	<0.1
Pyrene	mg/kg	0.7	<0.1
Benzo(a)anthracene	mg/kg	0.4	<0.1
Chrysene	mg/kg	0.4	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.8	<0.2
Benzo(a)pyrene	mg/kg	0.5	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	<0.1
Total +ve PAH's	mg/kg	4.5	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.6	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.7	<0.5
Surrogate p-Terphenyl-d14	%	119	127

Organochlorine Pesticides in soil	Organochlorine Pesticides in soil							
Our Reference		250248-1	250248-3	250248-5				
Your Reference	UNITS	BH606	BH607	BH608				
Depth		0.5	0.5	0.5				
Date Sampled		28/08/2020	31/08/2020	27/08/2020				
Type of sample		SOIL	SOIL	SOIL				
Date extracted	-	03/09/2020	03/09/2020	03/09/2020				
Date analysed	-	03/09/2020	03/09/2020	03/09/2020				
alpha-BHC	mg/kg	<0.1	<0.1	<0.1				
НСВ	mg/kg	<0.1	<0.1	<0.1				
beta-BHC	mg/kg	<0.1	<0.1	<0.1				
gamma-BHC	mg/kg	<0.1	<0.1	<0.1				
Heptachlor	mg/kg	<0.1	0.2	<0.1				
delta-BHC	mg/kg	<0.1	<0.1	<0.1				
Aldrin	mg/kg	<0.1	<0.1	<0.1				
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1				
gamma-Chlordane	mg/kg	<0.1	1.1	<0.1				
alpha-chlordane	mg/kg	<0.1	0.1	<0.1				
Endosulfan I	mg/kg	<0.1	<0.1	<0.1				
pp-DDE	mg/kg	<0.1	<0.1	<0.1				
Dieldrin	mg/kg	<0.1	<0.1	<0.1				
Endrin	mg/kg	<0.1	<0.1	<0.1				
Endosulfan II	mg/kg	<0.1	<0.1	<0.1				
pp-DDD	mg/kg	<0.1	<0.1	<0.1				
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1				
pp-DDT	mg/kg	<0.1	<0.1	<0.1				
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1				
Methoxychlor	mg/kg	<0.1	<0.1	<0.1				
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1				
Surrogate TCMX	%	101	100	104				

Organophosphorus Pesticides in Soil				
Our Reference		250248-1	250248-3	250248-5
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	0.5	0.5
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020	03/09/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	100	104

PCBs in Soil				
Our Reference		250248-1	250248-3	250248-5
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	0.5	0.5
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date extracted	-	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020	03/09/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	101	100	104

Acid Extractable metals in soil						
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608
Depth		0.5	1.0	0.5	1.0	0.5
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	1	4	1	2
Copper	mg/kg	6	2	8	1	4
Lead	mg/kg	15	8	73	7	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	3	<1	<1
Zinc	mg/kg	12	7	24	4	5

Acid Extractable metals in soil			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date prepared	-	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	3	5
Copper	mg/kg	7	1
Lead	mg/kg	29	5
Mercury	mg/kg	0.2	<0.1
Nickel	mg/kg	<1	1
Zinc	mg/kg	6	3

Misc Soil - Inorg				
Our Reference		250248-1	250248-3	250248-5
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	0.5	0.5
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	03/09/2020	03/09/2020	03/09/2020
Date analysed	-	03/09/2020	03/09/2020	03/09/2020
Total Phenolics (as Phenol)	mg/kg	<5	<5	<5

Moisture						
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608
Depth		0.5	1.0	0.5	1.0	0.5
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date prepared	-	3/09/2020	3/09/2020	3/09/2020	3/09/2020	3/09/2020
Date analysed	-	4/09/2020	4/09/2020	4/09/2020	4/09/2020	4/09/2020
Moisture	%	2.8	0.8	8.9	2.5	2.3
		- -				

Moisture			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date prepared	-	3/09/2020	3/09/2020
Date analysed	-	4/09/2020	4/09/2020
Moisture	%	6.0	9.1

Asbestos ID - soils						
Our Reference		250248-1	250248-2	250248-3	250248-4	250248-5
Your Reference	UNITS	BH606	BH606	BH607	BH607	BH608
Depth		0.5	1.0	0.5	1.0	0.5
Date Sampled		28/08/2020	28/08/2020	31/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL	SOIL	SOIL
Date analysed	-	03/09/2020	03/09/2020	03/09/2020	03/09/2020	03/09/2020
Sample mass tested	g	Approx. 35g	Approx. 35g	Approx. 30g	Approx. 35g	Approx. 30g
Sample Description	-	Grey fine-grained soil & rocks	Grey fine-grained soil & rocks	Grey fine-grained soil & rocks	Grey fine-grained soil & rocks	Grey fine-grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils			
Our Reference		250248-6	250248-7
Your Reference	UNITS	BH608	BH608
Depth		1	2
Date Sampled		27/08/2020	27/08/2020
Type of sample		SOIL	SOIL
Date analysed	-	03/09/2020	03/09/2020
Sample mass tested	g	Approx. 30g	Approx. 25g
Sample Description	-	Grey fine-grained soil & rocks	Grey fine-grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Misc Inorg - Soil				
Our Reference		250248-1	250248-4	250248-6
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	1.0	1
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	04/09/2020	04/09/2020	04/09/2020
Date analysed	-	04/09/2020	04/09/2020	04/09/2020
pH 1:5 soil:water	pH Units	6.2	5.8	5.3

CEC				
Our Reference		250248-1	250248-4	250248-6
Your Reference	UNITS	BH606	BH607	BH608
Depth		0.5	1.0	1
Date Sampled		28/08/2020	31/08/2020	27/08/2020
Type of sample		SOIL	SOIL	SOIL
Date prepared	-	07/09/2020	07/09/2020	07/09/2020
Date analysed	-	07/09/2020	07/09/2020	07/09/2020
Exchangeable Ca	meq/100g	2.1	1.0	0.6
Exchangeable K	meq/100g	0.1	<0.1	<0.1
Exchangeable Mg	meq/100g	1.3	<0.1	0.14
Exchangeable Na	meq/100g	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	3.5	1.1	<1

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary									
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.									
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.									
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>									
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.									
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.									
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.									
QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Red	covery %
---------------------------	-----------	---------	---------	------------	------	------	---------	------	------------	----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]	[NT]	[NT]	[NT]	03/09/2020	
Date analysed	-			04/09/2020	[NT]	[NT]	[NT]	[NT]	04/09/2020	
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Chloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Vinyl Chloride	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Bromomethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Chloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Trichlorofluoromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1-Dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1-dichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	75	
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
bromochloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
chloroform	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	88	
2,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,2-dichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	70	
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	88	
1,1-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Cyclohexane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
carbon tetrachloride	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]	[NT]	[NT]	[NT]	[NT]	
dibromomethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
trichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	95	
bromodichloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	89	
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]	[NT]	[NT]	[NT]	[NT]	
1,3-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
dibromochloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	85	
1,2-dibromoethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
tetrachloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	111	
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
chlorobenzene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
bromoform	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]	[NT]	[NT]	[NT]	[NT]	
styrene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	

QUALI	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	99	[NT]		[NT]	[NT]	101	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	105	[NT]		[NT]	[NT]	114	[NT]
Surrogate Toluene-d ₈	%		Org-023	98	[NT]		[NT]	[NT]	104	[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	117	[NT]	[NT]	[NT]	[NT]	117	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			04/09/2020	[NT]		[NT]	[NT]	04/09/2020	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	106	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	90	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	95	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	111	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	118	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	119	[NT]
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	105	[NT]		[NT]	[NT]	114	[NT]

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	04/09/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	112	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	112	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	100	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-020	72	[NT]	[NT]	[NT]	[NT]	119	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	95	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	122	[NT]	[NT]	[NT]	[NT]	123	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	92	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	101	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	103	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	104	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CONTRO	L: Organoph	osphoru	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	102	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	116	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	105	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	108	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	107	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	104	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CONTROL: PCBs in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	80	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-021	104	[NT]	[NT]	[NT]	[NT]	98	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	105	[NT]
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	101	[NT]
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	92	[NT]
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	95	[NT]
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	94	[NT]
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	112	[NT]
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	91	[NT]
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	90	[NT]

QUALITY	QUALITY CONTROL: Misc Soil - Inorg st Description Units PQL Method Bit e prepared - 03/09 03/09 e analysed - 0 03/09					Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Date analysed	-			03/09/2020	[NT]		[NT]	[NT]	03/09/2020	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CONTROL: Misc Inorg - Soil Test Description Units PQL Method E late prepared - 04// vate analysed - 04// 04//						Du	plicate		Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			04/09/2020	[NT]		[NT]	[NT]	04/09/2020		
Date analysed	-			04/09/2020	[NT]		[NT]	[NT]	04/09/2020		
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]	

QU.	ALITY CONT	ROL: CE	C			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			07/09/2020	4	07/09/2020	07/09/2020		07/09/2020	
Date analysed	-			07/09/2020	4	07/09/2020	07/09/2020		07/09/2020	
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	4	1.0	1.1	10	111	
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	4	<0.1	<0.1	0	115	
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	4	<0.1	<0.1	0	105	
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	4	<0.1	<0.1	0	104	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions						
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Tests/Analytes PH for 250248-6 have exceeded the recommended technical holding times, Envirolab Group form 347 "Recommended Preservation and Holding Times" can be provided on request (available on the Envirolab website)

Douglas Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:	No: 72505.19				Suburb: Randwick			To: Envirolab Services Pty Ltd			/ Ltd			
Project Nam	e:	RCR HRL Order				Order I	Number			12 Ashley Street, Chatswood,			tswood, NSW 2067	
Project Mana	ager:	Paul Gorman Sampler: JJH				Attn:	Aileen H	ie						
Emails:		joel.james-hall;paul.gorman@douglaspartners.com.au					Phone:	·						
Date Require	ed:	Same	day 🛛	24 hours	s 🗆 🛛 4	8 hours i	72	hours 🛛	Star	idard 🛛	Email:	<u>Ahie@e</u>	nvirolab.com	<u>1.au</u>
Prior Storage	Storage: Esky Fridge Shelved Do samples contain 'potential' HBM? No				No 🗆	(If YES, ther	handle, transpo	rt and store in ac	cordance with FPM HAZID)					
			ipled	Sample Type	r Type			1		Analytes				
Sample ID	Depth Range	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3a	VOC	pH + CEC					Notes/preservation
BH606	0.5	1	28.8.20	s	G	x		x	x					A HITEN WE IN CALIFORNIE T
BH606	1.0	2	28.8.20	s	G		x						113	Chatswood NSW 2067
BH607	0.5	3	31.8.20	S	G	x		x					Jţ	<u>ph: 102) 9910 6200</u> b No: 250248
BH607	1.0	Y	31.8.20	S	G		· X	-	x				Da	te Received: 20D
BH608	0.5	5	27.8.20	S	G	x		x					Ti	ne Received 829
BH608	1	Ь	27.8.20	S	- G		x		x				Te	mp Cool/Ambient
BH608	2	77	27.8.20	S	G		x		:				Cu	oling. Hee/Icepack
		· .					. •							
					_		., .							
PQL (S) mg/l											_	AN	ZECC PQLs	req'd for all water analytes 门
PQL = practi	ical quan	titation	limit. If n	ione giver	n, default t	o Laborat	ory Meth	od Detect	tion Limit		Lab Re	port/Referer	ice No:	-
Metals to An	alyse: 8	<u>IM unle</u>	ess specifi	ed here	Bali	auishos			Trancos	rtod to la	boratory	hy		
Send Result	s to:	<u>חו בסוק</u> חחו	Jolas Partn	ers Ptv I t		ress	. by		nanspe		aboratory	Ph	one:	Fax:
		0	-9.001 0101	<u> </u>	_	. T	1 and	0 1/10					0/0/	
Sianed:	Signed: Received by: FX 310 (710 4000 Date & Time: 21970 029								ULOMA	N	Date & Time:			

-

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall

Sample Login Details	
Your reference	72505.19, RCR HRL Randwick
Envirolab Reference	250248
Date Sample Received	02/09/2020
Date Instructions Received	02/09/2020
Date Results Expected to be Reported	09/09/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	7 SOIL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	8.6
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Misc Inorg - Soil	CEC
	1	1	1	1	1	1	1	1	1			1
DU00-0'3	V	✓	✓	✓	✓	v	✓	✓	✓	✓	✓	✓
ВН606-1.0	•	✓ ✓	✓ ✓	✓ ✓	✓	•	✓	✓ ✓	✓	✓ ✓	✓	✓
BH606-1.0 BH607-0.5	 ▼ ✓ 	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓	✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓	✓	✓
BH606-1.0 BH607-0.5 BH607-1.0	 ✓ ✓ 	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	 ✓ ✓ ✓ ✓ 	✓ ✓	✓ ✓	 ✓ ✓ 	 ✓ ✓ ✓ ✓ 	✓ ✓	✓ ✓ ✓ ✓	✓ ✓	✓
BH606-1.0 BH607-0.5 BH607-1.0 BH608-0.5	 ▼ ✓ ✓ ✓ 	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	 ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓ ✓	✓ ✓ ✓ ✓ ✓	✓ ✓	✓
BH606-0.5 BH607-0.5 BH607-1.0 BH608-0.5 BH608-1	▼ √ √	✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓ ✓	 ✓ ✓ ✓ 	✓ ✓ ✓	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓ ✓	 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 	✓ ✓ ✓	✓ ✓ ✓

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 250248-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Joel James-Hall
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.19, RCR HRL Randwick
Number of Samples	7 SOIL
Date samples received	02/09/2020
Date completed instructions received	17/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	24/09/2020				
Date of Issue	22/09/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Dragana Tomas, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

PAHs in TCLP (USEPA 1311)		
Our Reference		250248-A-1
Your Reference	UNITS	BH606
Depth		0.5
Date Sampled		28/08/2020
Type of sample		SOIL
pH of soil for fluid# determ.	pH units	7.6
pH of soil TCLP (after HCl)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	5.0
Date extracted	-	18/09/2020
Date analysed	-	18/09/2020
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	115

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			18/09/2020	[NT]		[NT]	[NT]	18/09/2020	
Date analysed	-			18/09/2020	[NT]		[NT]	[NT]	18/09/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	87	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	93	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	94	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	93	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	96	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	82	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	95	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	130	[NT]	[NT]	[NT]	[NT]	117	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	Quality Control Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Μ	ing	То

From:	Joel James-Hall <joel.james-hall@c< th=""><th>louglaspartners.com.au></th></joel.james-hall@c<>	louglaspartners.com.au>
Sent:	Thursday, 17 September 2020 2:57	PM
То:	Samplereceipt; Simon Song	Not- 250248-A
Cc:	Paul Gorman	Ref. 2302+0
Subject:	ELS 250248	1471: Standard Due: 24/09/2020 MT.

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Simon,

Could we please schedule TCLP for PAH:

• BH606/0.5 (ELS ref 250248-1)

Standard TAT.

Thanks

Joel James-Hall | Environmental Engineer Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 9809 0666 | E: joel.james-hall@douglaspartners.com.au

To find information on our COVID-19 measures, please visit douglaspartners.com.au/news/covid-19

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

CLIENT CHOIC

2020 WINN

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by **Mimecast Ltd**, an innovator in Software as a Service (SaaS) for business. Providing a **safer** and **more useful** place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.

CERTIFICATE OF ANALYSIS 250526

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.19, RCR HRL
Number of Samples	4 SOIL
Date samples received	04/09/2020
Date completed instructions received	04/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 11/09/2020

 Date of Issue
 11/09/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil			
Our Reference		250526-2	250526-4
Your Reference	UNITS	TP601	TP603
Depth		1.0-1.2	0.3-0.5
Date Sampled		02/09/2020	02/09/2020
Type of sample		SOIL	SOIL
Date extracted	-	07/09/2020	07/09/2020
Date analysed	-	08/09/2020	08/09/2020
Dichlorodifluoromethane	mg/kg	<1	<1
Chloromethane	mg/kg	<1	<1
Vinyl Chloride	mg/kg	<1	<1
Bromomethane	mg/kg	<1	<1
Chloroethane	mg/kg	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1
1,1-dichloroethane	mg/kg	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1
bromochloromethane	mg/kg	<1	<1
chloroform	mg/kg	<1	<1
2,2-dichloropropane	mg/kg	<1	<1
1,2-dichloroethane	mg/kg	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1
1,1-dichloropropene	mg/kg	<1	<1
Cyclohexane	mg/kg	<1	<1
carbon tetrachloride	mg/kg	<1	<1
Benzene	mg/kg	<0.2	<0.2
dibromomethane	mg/kg	<1	<1
1,2-dichloropropane	mg/kg	<1	<1
trichloroethene	mg/kg	<1	<1
bromodichloromethane	mg/kg	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1
Toluene	mg/kg	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1
dibromochloromethane	mg/kg	<1	<1
1,2-dibromoethane	mg/kg	<1	<1
tetrachloroethene	mg/kg	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1
chlorobenzene	mg/kg	<1	<1

VOCs in soil			
Our Reference		250526-2	250526-4
Your Reference	UNITS	TP601	TP603
Depth		1.0-1.2	0.3-0.5
Date Sampled		02/09/2020	02/09/2020
Type of sample		SOIL	SOIL
Ethylbenzene	mg/kg	<1	<1
bromoform	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
styrene	mg/kg	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1
o-Xylene	mg/kg	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1
isopropylbenzene	mg/kg	<1	<1
bromobenzene	mg/kg	<1	<1
n-propyl benzene	mg/kg	<1	<1
2-chlorotoluene	mg/kg	<1	<1
4-chlorotoluene	mg/kg	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1
tert-butyl benzene	mg/kg	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1
sec-butyl benzene	mg/kg	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1
4-isopropyl toluene	mg/kg	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1
n-butyl benzene	mg/kg	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1
hexachlorobutadiene	mg/kg	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1
Surrogate Dibromofluorometha	%	99	98
Surrogate aaa-Trifluorotoluene	%	120	126
<i>Surrogate</i> Toluene-d ₈	%	99	97
Surrogate 4-Bromofluorobenzene	%	100	102

vTRH(C6-C10)/BTEXN in Soil				_	
Our Reference		250526-1	250526-2	250526-3	250526-4
Your Reference	UNITS	TP601	TP601	TP602	TP603
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020
Date analysed	-	08/09/2020	08/09/2020	08/09/2020	08/09/2020
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	121	120	121	126

svTRH (C10-C40) in Soil					
Our Reference		250526-1	250526-2	250526-3	250526-4
Your Reference	UNITS	TP601	TP601	TP602	TP603
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020
Date analysed	-	08/09/2020	08/09/2020	08/09/2020	08/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	85	91	90	87

PAHs in Soil					
Our Reference		250526-1	250526-2	250526-3	250526-4
Your Reference	UNITS	TP601	TP601	TP602	TP603
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date extracted	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020
Date analysed	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.2	0.5	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	<0.1	0.3	1.3	<0.1
Pyrene	mg/kg	<0.1	0.3	1.4	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.2	0.9	<0.1
Chrysene	mg/kg	<0.1	0.2	0.8	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.3	1	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	0.96	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.1	0.5	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.1	0.6	0.1
Total +ve PAH's	mg/kg	<0.05	1.9	9.0	0.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	1.4	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	1.4	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	1.4	<0.5
Surrogate p-Terphenyl-d14	%	101	93	96	97

Organochlorine Pesticides in soil					
Our Reference		250526-1	250526-4		
Your Reference	UNITS	TP601	TP603		
Depth		0.1-0.3	0.3-0.5		
Date Sampled		02/09/2020	02/09/2020		
Type of sample		SOIL	SOIL		
Date extracted	-	07/09/2020	07/09/2020		
Date analysed	-	07/09/2020	07/09/2020		
alpha-BHC	mg/kg	<0.1	<0.1		
НСВ	mg/kg	<0.1	<0.1		
beta-BHC	mg/kg	<0.1	<0.1		
gamma-BHC	mg/kg	<0.1	<0.1		
Heptachlor	mg/kg	<0.1	<0.1		
delta-BHC	mg/kg	<0.1	<0.1		
Aldrin	mg/kg	<0.1	<0.1		
Heptachlor Epoxide	mg/kg	<0.1	<0.1		
gamma-Chlordane	mg/kg	<0.1	<0.1		
alpha-chlordane	mg/kg	<0.1	<0.1		
Endosulfan I	mg/kg	<0.1	<0.1		
pp-DDE	mg/kg	<0.1	<0.1		
Dieldrin	mg/kg	<0.1	<0.1		
Endrin	mg/kg	<0.1	<0.1		
Endosulfan II	mg/kg	<0.1	<0.1		
pp-DDD	mg/kg	<0.1	<0.1		
Endrin Aldehyde	mg/kg	<0.1	<0.1		
pp-DDT	mg/kg	<0.1	<0.1		
Endosulfan Sulphate	mg/kg	<0.1 <0.1			
Methoxychlor	mg/kg	<0.1	<0.1		
Total +ve DDT+DDD+DDE	mg/kg	<0.1 <0.1			
Surrogate TCMX	%	104 99			

Organophosphorus Pesticides in Soil				
Our Reference		250526-1	250526-4	
Your Reference	UNITS	TP601	TP603	
Depth		0.1-0.3	0.3-0.5	
Date Sampled		02/09/2020	02/09/2020	
Type of sample		SOIL	SOIL	
Date extracted	-	07/09/2020	07/09/2020	
Date analysed	-	07/09/2020	07/09/2020	
Dichlorvos	mg/kg	<0.1	<0.1	
Dimethoate	mg/kg	<0.1	<0.1	
Diazinon	mg/kg	<0.1	<0.1	
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	
Ronnel	mg/kg	<0.1	<0.1	
Fenitrothion	mg/kg	<0.1	<0.1	
Malathion	mg/kg	<0.1	<0.1	
Chlorpyriphos	mg/kg	<0.1	<0.1	
Parathion	mg/kg	<0.1	<0.1	
Bromophos-ethyl	mg/kg	<0.1	<0.1	
Ethion	mg/kg	<0.1	<0.1	
Azinphos-methyl (Guthion)	mg/kg	<0.1 <0.1		
Surrogate TCMX	%	104	99	

PCBs in Soil				
Our Reference		250526-1	250526-4	
Your Reference	UNITS	TP601	TP603	
Depth		0.1-0.3	0.3-0.5	
Date Sampled		02/09/2020	02/09/2020	
Type of sample		SOIL	SOIL	
Date extracted	-	07/09/2020	07/09/2020	
Date analysed	-	07/09/2020	07/09/2020	
Aroclor 1016	mg/kg	<0.1	<0.1	
Aroclor 1221	mg/kg	<0.1	<0.1	
Aroclor 1232	mg/kg	<0.1	<0.1	
Aroclor 1242	mg/kg	<0.1	<0.1	
Aroclor 1248	mg/kg	<0.1	<0.1	
Aroclor 1254	mg/kg	<0.1	<0.1	
Aroclor 1260	mg/kg	<0.1	<0.1	
Total +ve PCBs (1016-1260)	mg/kg	<0.1 <0.1		
Surrogate TCMX	%	104	99	

Misc Soil - Inorg					
Our Reference		250526-1	250526-4		
Your Reference	UNITS	TP601	TP603		
Depth		0.1-0.3	0.3-0.5		
Date Sampled		02/09/2020	02/09/2020		
Type of sample		SOIL	SOIL		
Date prepared	-	07/09/2020	07/09/2020		
Date analysed	-	07/09/2020	07/09/2020		
Total Phenolics (as Phenol)	mg/kg	<5	<5		

Acid Extractable metals in soil						
Our Reference		250526-1	250526-2	250526-3	250526-4	
Your Reference	UNITS	TP601	TP601	TP602	TP603	
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5	
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date prepared	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020	
Date analysed	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020	
Arsenic	mg/kg	<4	<4	<4	<4	
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	
Chromium	mg/kg	7	4	3	14	
Copper	mg/kg	67	12	13	12	
Lead	mg/kg	10	79	96	3	
Mercury	mg/kg	<0.1	0.8	0.1	<0.1	
Nickel	mg/kg	3	1	3	19	
Zinc	mg/kg	41	140	130	13	
Moisture						
----------------	-------	------------	------------	------------	------------	
Our Reference		250526-1	250526-2	250526-3	250526-4	
Your Reference	UNITS	TP601	TP601	TP602	TP603	
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5	
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020	
Type of sample		SOIL	SOIL	SOIL	SOIL	
Date prepared	-	07/09/2020	07/09/2020	07/09/2020	07/09/2020	
Date analysed	-	08/09/2020	08/09/2020	08/09/2020	08/09/2020	
Moisture	%	28	11	12	8.2	

Asbestos ID - soils					
Our Reference		250526-1	250526-2	250526-3	250526-4
Your Reference	UNITS	TP601	TP601	TP602	TP603
Depth		0.1-0.3	1.0-1.2	0.7-0.9	0.3-0.5
Date Sampled		02/09/2020	02/09/2020	02/09/2020	02/09/2020
Type of sample		SOIL	SOIL	SOIL	SOIL
Date analysed	-	10/09/2020	10/09/2020	10/09/2020	10/09/2020
Sample mass tested	g	Approx. 25g	Approx. 30g	28.26g	Approx. 30g
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Asbestos comments	-	NO	NO	YES	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			08/09/2020	[NT]		[NT]	[NT]	08/09/2020	
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromomethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	127	
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
bromochloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
chloroform	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	122	
2,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	124	
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	121	
1,1-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
carbon tetrachloride	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	[NT]	
dibromomethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
trichloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	104	
bromodichloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	128	
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	[NT]	
1,3-dichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
dibromochloromethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	121	
1,2-dibromoethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
tetrachloroethene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	121	
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
chlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
bromoform	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	[NT]	
styrene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
isopropylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
bromobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
tert-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
sec-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
hexachlorobutadiene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluorometha	%		Org-023	99	[NT]		[NT]	[NT]	98	
Surrogate aaa-Trifluorotoluene	%		Org-023	121	[NT]		[NT]	[NT]	120	
Surrogate Toluene-d ₈	%		Org-023	98	[NT]		[NT]	[NT]	99	
Surrogate 4-Bromofluorobenzene	%		Org-023	100	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			08/09/2020	[NT]		[NT]	[NT]	08/09/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	125	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	125	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	128	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	127	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	120	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	125	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	128	[NT]
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	121	[NT]		[NT]	[NT]	120	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			08/09/2020	[NT]		[NT]	[NT]	08/09/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	95	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	73	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	77	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	95	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	73	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	77	
Surrogate o-Terphenyl	%		Org-020	96	[NT]	[NT]	[NT]	[NT]	100	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	99	[NT]	[NT]	[NT]	[NT]	92	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	86	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	87	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	109	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	80	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	105	[NT]	[NT]	[NT]	[NT]	96	[NT]

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	84	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	77	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	82	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	105	[NT]		[NT]	[NT]	96	

QUALIT	Y CONTRO	L: PCBs i	n Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	[NT]
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	80	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate TCMX	%		Org-021	105	[NT]		[NT]	[NT]	96	[NT]

QUALITY	CONTROL:	Misc Soi		Du	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	[NT]
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	101	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	Du	plicate	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Date analysed	-			07/09/2020	[NT]		[NT]	[NT]	07/09/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	98	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	91	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	83	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	90	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	83	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	98	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	85	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	85	

Result Definiti	Result Definitions						
NT	Not tested						
NA	Test not required						
INS	Insufficient sample for this test						
PQL	Practical Quantitation Limit						
<	Less than						
>	Greater than						
RPD	Relative Percent Difference						
LCS	Laboratory Control Sample						
NS	Not specified						
NEPM	National Environmental Protection Measure						
NR	Not Reported						

Quality Control	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Sample 250526-3; Loose fibre bundles of Amosite asbestos identified within the sample, however it is estimated less than the reporting limit for the method (i.e. < 0.1g/kg).

Douglas Partners Geotechnics | Environment | Groundwater

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		72505	5.19			Suburk):	Randwid	ck · ···		To: Envirolab Services Pty Ltd					
Project Name	e:	RCR	HRL		Order Number 12 Ashley Street, Chatswood, NSW 2067							atswood, NSW 2067				
Project Mana	nger:	Paul	Gorman	•	Sampler: JJH Attn: Aileen Hie											
Emails:	Emails: joel.james-ball;paul.gormani@douglaspartners.com.au /Phone:															
Date Require	ed: /	Same	¢łay □	24 hours	s <u> </u>	hours D	<u>72 </u>	nours 🛛	Stand	lard 🕑	Email:	<u>Ahi</u>	e@envire	<u>olab.cor</u>	<u>n.au</u>	
Prior Storage	e: 🗹 Es	sky 🗹	Fridge 🛛	Shelve	d	Do sam	oles contai	n 'potential	'HBM?	<u>No</u> 🖌 ((If YES, ther	handle, tra	insport and	store in ac	cordance with FPM HAZID)	
			oled	Sample Type	Container Type			, ,	. •	Analytes	<i>.</i> .	·.				
Sample ID	Depth Range	Lab ID	Date Samp	S - soil W - water	G - glass P - plastic	Combo 8a	Combo 3a	VOC	Combo 3						Notes/preservation	
TP601	0.1-0.3	Ì	02/09/20			x							÷ :			
TP601	1.0-1.2	2	02/09/20		<u> </u>		. x	x				20 20				
TP602	0.7-0.9	3	02/09/20				x						· ·			
TP603	0.3-0.5	4	03/09/20	-		x		x	,		· · · · ·	: *				
BD1/20200902		X	03/09/20		-				X						Inter-lab duplicate	
										· .						
						•	• •	4 								
· · · ·									·. ·						ENVIROLAB 12 Ashley St	
									•			. :		•	Ph: (02) 9910 6200	
						-									250526	
· ·	· · · ·													•	Date Received: 04-09-2020	
					· ·			· · · ·			·. ·				Received By: KG. 1500	
		: .								· · · · ·	···. ·				Cooling: Ice/Icepack	
		-										· ·			Security Infact/Broken/None	
										::	·					
PQL (S) mg/l	H .												ANZEC	C PQLs	s req'd for all water analytes 🛛	
PQL = practi	cal quan	titation	limit. If no	one giver	i, default to	Laborate	ory Metho	d Detectio	on Limit		Lab R	eport/Re	ference N	lo:		
Metals to An	alyse: 8	IM unle	ss specifie	ed here:	Dali	naujebor	Iby: This		Transpo	orted to le	aborator	<u>, hv:</u>				
Send Result	s to:	pies in Do	uglas Partn	ers Ptv L	td Add	ress	<u>, vy. j</u>	<u> </u>	Tanopo		<u>aboratory</u>		Phone	:	Fax:	
Signed:	>600				Received	by:	ELS S	nd ,	K-Ge	se	ÚÞ	Date &	Time: 0	4/09/	2020 1500	
<u> y </u>																

1 .

2

ř

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman

Sample Login Details	
Your reference	72505.19, RCR HRL
Envirolab Reference	250526
Date Sample Received	04/09/2020
Date Instructions Received	04/09/2020
Date Results Expected to be Reported	11/09/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	4 SOIL
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Sample ID	VOCs in soil	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Misc Soil - Inorg	Acid Extractable metalsin soil	Asbestos ID - soils
TP601-0.1-0.3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TP601-1.0-1.2	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark
TP602-0.7-0.9		\checkmark	\checkmark	\checkmark					\checkmark	\checkmark
TP603-0.3-0.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

The '\' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

CERTIFICATE OF ANALYSIS 250526-A

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>72505.19, RCR HRL</u>
Number of Samples	4 SOIL
Date samples received	04/09/2020
Date completed instructions received	16/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	23/09/2020			
Date of Issue	22/09/2020			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

<u>Results Approved By</u> Dragana Tomas, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

PAHs in TCLP (USEPA 1311)		
Our Reference		250526-A-3
Your Reference	UNITS	TP602
Depth		0.7-0.9
Date Sampled		02/09/2020
Type of sample		SOIL
pH of soil for fluid# determ.	pH units	7.0
pH of soil TCLP (after HCl)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	5.0
Date extracted	-	18/09/2020
Date analysed	-	18/09/2020
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
Fluorene in TCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	88

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004. Please note that the mass used may be scaled down from the default based on sample mass available.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			18/09/2020	[NT]		[NT]	[NT]	18/09/2020	[NT]
Date analysed	-			18/09/2020	[NT]		[NT]	[NT]	18/09/2020	
Naphthalene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	76	
Acenaphthylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Acenaphthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
Fluorene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	79	
Phenanthrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	80	
Anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Fluoranthene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	79	
Pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	79	
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Chrysene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	70	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.002	Org-022/025	<0.002	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	72	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-022/025	<0.001	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	110	[NT]	[NT]	[NT]	[NT]	96	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions				
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Jessica Hie

From: Sent: To: Cc: Subject: Nick Sarlamis Wednesday, 16 September 2020 5:48 PM Paul Gorman; Joel James-Hall Jessica Hie FW: Results for Registration 250526 72505.19, RCR HRL

No worries Paul

250526-A Due:23/9/20. Std TAT

From: Paul Gorman <Paul.Gorman@douglaspartners.com.au> Sent: Wednesday, 16 September 2020 5:11 PM To: Nick Sarlamis <NSarlamis@envirolab.com.au>; Joel James-Hall <joel.james-hall@douglaspartners.com.au> Subject: Re: Results for Registration 250526 72505.19, RCR HRL

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Nick,

Can you please schedule the following sample for TCLP on a standard turnaround.

3) ' ВН602/0.7-0.9 РАН

Thanks

Paul

From: Nick Sarlamis <<u>NSarlamis@envirolab.com.au</u>> Sent: Friday, 11 September 2020 1:39:26 PM To: Paul Gorman; Joel James-Hall Subject: Results for Registration 250526 72505.19, RCR HRL

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you ESDAT Extracts an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

CERTIFICATE OF ANALYSIS 250805

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.19, Randwick
Number of Samples	2 Water, 2 Soil
Date samples received	09/09/2020
Date completed instructions received	09/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 16/09/2020

 Date of Issue
 16/09/2020

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Loren Bardwell, Senior Chemist Lucy Zhu, Asbestos Supervisor Phalak Inthakesone, Organics Development Manager, Sydney Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor Authorised By

Nancy Zhang, Laboratory Manager

VOCs in soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
Dichlorodifluoromethane	mg/kg	<1
Chloromethane	mg/kg	<1
Vinyl Chloride	mg/kg	<1
Bromomethane	mg/kg	<1
Chloroethane	mg/kg	<1
Trichlorofluoromethane	mg/kg	<1
1,1-Dichloroethene	mg/kg	<1
trans-1,2-dichloroethene	mg/kg	<1
1,1-dichloroethane	mg/kg	<1
cis-1,2-dichloroethene	mg/kg	<1
bromochloromethane	mg/kg	<1
chloroform	mg/kg	<1
2,2-dichloropropane	mg/kg	<1
1,2-dichloroethane	mg/kg	<1
1,1,1-trichloroethane	mg/kg	<1
1,1-dichloropropene	mg/kg	<1
Cyclohexane	mg/kg	<1
carbon tetrachloride	mg/kg	<1
Benzene	mg/kg	<0.2
dibromomethane	mg/kg	<1
1,2-dichloropropane	mg/kg	<1
trichloroethene	mg/kg	<1
bromodichloromethane	mg/kg	<1
trans-1,3-dichloropropene	mg/kg	<1
cis-1,3-dichloropropene	mg/kg	<1
1,1,2-trichloroethane	mg/kg	<1
Toluene	mg/kg	<0.5
1,3-dichloropropane	mg/kg	<1
dibromochloromethane	mg/kg	<1
1,2-dibromoethane	mg/kg	<1
tetrachloroethene	mg/kg	<1
1,1,1,2-tetrachloroethane	mg/kg	<1
chlorobenzene	mg/kg	<1

VOCs in soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Ethylbenzene	mg/kg	<1
bromoform	mg/kg	<1
m+p-xylene	mg/kg	<2
styrene	mg/kg	<1
1,1,2,2-tetrachloroethane	mg/kg	<1
o-Xylene	mg/kg	<1
1,2,3-trichloropropane	mg/kg	<1
isopropylbenzene	mg/kg	<1
bromobenzene	mg/kg	<1
n-propyl benzene	mg/kg	<1
2-chlorotoluene	mg/kg	<1
4-chlorotoluene	mg/kg	<1
1,3,5-trimethyl benzene	mg/kg	<1
tert-butyl benzene	mg/kg	<1
1,2,4-trimethyl benzene	mg/kg	<1
1,3-dichlorobenzene	mg/kg	<1
sec-butyl benzene	mg/kg	<1
1,4-dichlorobenzene	mg/kg	<1
4-isopropyl toluene	mg/kg	<1
1,2-dichlorobenzene	mg/kg	<1
n-butyl benzene	mg/kg	<1
1,2-dibromo-3-chloropropane	mg/kg	<1
1,2,4-trichlorobenzene	mg/kg	<1
hexachlorobutadiene	mg/kg	<1
1,2,3-trichlorobenzene	mg/kg	<1
Surrogate Dibromofluorometha	%	106
Surrogate aaa-Trifluorotoluene	%	101
<i>Surrogate</i> Toluene-d ₈	%	106
Surrogate 4-Bromofluorobenzene	%	111

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
TRH C ₆ - C ₉	mg/kg	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<3	<3
Surrogate aaa-Trifluorotoluene	%	98	101

svTRH (C10-C40) in Soil			
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	16/09/2020	16/09/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	110	<100
TRH >C10 -C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	170	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (C10-C36)	mg/kg	110	<50
Total +ve TRH (>C10-C40)	mg/kg	170	<50
Surrogate o-Terphenyl	%	92	83

PAHs in Soil			
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.4
Anthracene	mg/kg	0.2	0.1
Fluoranthene	mg/kg	1.1	1.2
Pyrene	mg/kg	1.3	1.3
Benzo(a)anthracene	mg/kg	0.6	0.6
Chrysene	mg/kg	0.5	0.6
Benzo(b,j+k)fluoranthene	mg/kg	0.7	1
Benzo(a)pyrene	mg/kg	0.5	0.68
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	0.5
Total +ve PAH's	mg/kg	5.8	6.6
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.7	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.7	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.8	1
Surrogate p-Terphenyl-d14	%	101	101

Organochlorine Pesticides in soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
alpha-BHC	mg/kg	<0.1
НСВ	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	105

Organophosphorus Pesticides in Soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	105

PCBs in Soil			
Our Reference		250805-4	
Your Reference	UNITS	TP604	
Depth		0.4-0.5	
Date Sampled		07/04/2020	
Type of sample		Soil	
Date extracted	-	11/09/2020	
Date analysed	-	11/09/2020	
Aroclor 1016	mg/kg	<0.1	
Aroclor 1221	mg/kg	<0.1	
Aroclor 1232	mg/kg	<0.1	
Aroclor 1242	mg/kg	<0.1	
Aroclor 1248	mg/kg	<0.1	
Aroclor 1254	mg/kg	<0.1	
Aroclor 1260	mg/kg	<0.1	
Total +ve PCBs (1016-1260)	mg/kg	<0.1	
Surrogate TCMX	%	105	
Acid Extractable metals in soil			
---------------------------------	-------	------------	------------
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date prepared	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
Arsenic	mg/kg	<4	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	3	6
Copper	mg/kg	6	6
Lead	mg/kg	5	28
Mercury	mg/kg	<0.1	0.2
Nickel	mg/kg	2	5
Zinc	mg/kg	13	27

Misc Soil - Inorg		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date prepared	-	11/09/2020
Date analysed	-	11/09/2020
Total Phenolics (as Phenol)	mg/kg	<5

Moisture			
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date prepared	-	11/09/2020	11/09/2020
Date analysed	-	14/09/2020	14/09/2020
Moisture	%	15	8.9

Asbestos ID - soils			
Our Reference		250805-3	250805-4
Your Reference	UNITS	TP604	TP604
Depth		0.2-0.3	0.4-0.5
Date Sampled		07/04/2020	07/04/2020
Type of sample		Soil	Soil
Date analysed	-	14/09/2020	14/09/2020
Sample mass tested	g	Approx. 35g	Approx. 35g
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Asbestos comments	-	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected

Miscellaneous Inorg - soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date prepared	-	15/09/2020
Date analysed	-	15/09/2020
Ammonia as N in soil	mg/kg	<0.5

Explosives in Soil		
Our Reference		250805-4
Your Reference	UNITS	TP604
Depth		0.4-0.5
Date Sampled		07/04/2020
Type of sample		Soil
Date Extracted	-	15/09/2020
Date analysed	-	15/09/2020
НМХ	mg/kg	<0.1
RDX	mg/kg	<0.1
1,3,5-Trinitrobenzene	mg/kg	<0.1
1,3-Dinitrobenzene	mg/kg	<0.1
Tetryl	mg/kg	<0.1
2,4,6-Trinitrotoluene	mg/kg	<0.1
4-&2-AM-DNT(Isomeric Mixture)	mg/kg	<0.2
2,4-Dinitrotoluene	mg/kg	<0.1
2,6-Dinitrotoluene	mg/kg	<0.1
Nitrobenzene	mg/kg	<0.1
2-Nitrotoluene & 4-Nitrotoluene	mg/kg	<5
3-Nitrotoluene	mg/kg	<0.1
Nitroglycerine	mg/kg	<0.1
PETN	mg/kg	<0.1
3,5-Dinitroaniline	mg/kg	<0.1
Surrogate (Dinitrobenzene)	%	115

VOCs in water	_	
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
Dichlorodifluoromethane	μg/L	<10
Chloromethane	μg/L	<10
Vinyl Chloride	µg/L	<10
Bromomethane	μg/L	<10
Chloroethane	μg/L	<10
Trichlorofluoromethane	μg/L	<10
1,1-Dichloroethene	μg/L	<1
Trans-1,2-dichloroethene	μg/L	<1
1,1-dichloroethane	μg/L	<1
Cis-1,2-dichloroethene	μg/L	<1
Bromochloromethane	μg/L	<1
Chloroform	μg/L	<1
2,2-dichloropropane	μg/L	<1
1,2-dichloroethane	μg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	μg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	μg/L	<1
Tetrachloroethene	µg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	µg/L	<1

VOCs in water		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Ethylbenzene	µg/L	<1
Bromoform	µg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	µg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	μg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	µg/L	<1
1,3,5-trimethyl benzene	μg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	µg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	µg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	97
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	95

vTRH(C6-C10)/BTEXN in Water			
Our Reference		250805-1	250805-2
Your Reference	UNITS	BH608	BD1/20200908
Depth		-	-
Date Sampled		08/09/2020	08/09/2020
Type of sample		Water	Water
Date extracted	-	10/09/2020	10/09/2020
Date analysed	-	11/09/2020	11/09/2020
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10
Benzene	µg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	µg/L	<1	<1
m+p-xylene	μg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	97	95
Surrogate toluene-d8	%	100	99
Surrogate 4-BFB	%	95	96

svTRH (C10-C40) in Water			
Our Reference		250805-1	250805-2
Your Reference	UNITS	BH608	BD1/20200908
Depth		-	-
Date Sampled		08/09/2020	08/09/2020
Type of sample		Water	Water
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	12/09/2020	12/09/2020
TRH C ₁₀ - C ₁₄	µg/L	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100
TRH >C10 - C16	µg/L	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100
Surrogate o-Terphenyl	%	100	90

PAHs in Water - Low Level			
Our Reference		250805-1	250805-2
Your Reference	UNITS	BH608	BD1/20200908
Depth		-	-
Date Sampled		08/09/2020	08/09/2020
Type of sample		Water	Water
Date extracted	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
Naphthalene	µg/L	<0.2	<0.2
Acenaphthylene	µg/L	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1
Fluoranthene	µg/L	<0.1	0.1
Pyrene	µg/L	0.1	0.2
Benzo(a)anthracene	µg/L	<0.1	<0.1
Chrysene	µg/L	<0.1	0.1
Benzo(b,j+k)fluoranthene	µg/L	0.3	0.4
Benzo(a)pyrene	µg/L	0.2	0.3
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	0.2
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	0.1	0.2
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5
Total +ve PAH's	µg/L	0.82	1.5
Surrogate p-Terphenyl-d14	%	87	88

Organochlorine Pesticides in Water		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
alpha-BHC	µg/L	<0.2
НСВ	µg/L	<0.2
beta-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endosulfan Sulphate	μg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	85

OP Pesticides in Water		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
Dichlorvos	µg/L	<0.2
Dimethoate	µg/L	<0.2
Diazinon	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Ronnel	μg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	μg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Parathion	µg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Ethion	µg/L	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2
Surrogate TCMX	%	85

PCBs in Water		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	11/09/2020
Date analysed	-	11/09/2020
Aroclor 1016	µg/L	<2
Aroclor 1221	µg/L	<2
Aroclor 1232	μg/L	<2
Aroclor 1242	µg/L	<2
Aroclor 1248	µg/L	<2
Aroclor 1254	µg/L	<2
Aroclor 1260	µg/L	<2
Surrogate TCMX	%	85

HM in water - dissolved			
Our Reference		250805-1	250805-2
Your Reference	UNITS	BH608	BD1/20200908
Depth		-	-
Date Sampled		08/09/2020	08/09/2020
Type of sample		Water	Water
Date prepared	-	11/09/2020	11/09/2020
Date analysed	-	11/09/2020	11/09/2020
Arsenic-Dissolved	µg/L	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1
Copper-Dissolved	µg/L	9	1
Lead-Dissolved	µg/L	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05
Nickel-Dissolved	µg/L	6	5
Zinc-Dissolved	µg/L	17	16

Total Phenolics in Water		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	10/09/2020
Total Phenolics (as Phenol)	mg/L	<0.05

Miscellaneous Inorganics		
Our Reference		250805-1
Your Reference	UNITS	BH608
Depth		-
Date Sampled		08/09/2020
Type of sample		Water
Date prepared	-	09/09/2020
Date analysed	-	09/09/2020
рН	pH Units	5.6
Electrical Conductivity	µS/cm	430

Mathematics	Mathe de la su Ossana an
Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS. Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.
Org-029	Soil samples are extracted with acetonitrile. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MSMS.

QUALIT	TY CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			11/09/2020	[NT]	[NT]	[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]	[NT]	[NT]	[NT]	11/09/2020	
Dichlorodifluoromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Chloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Vinyl Chloride	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Bromomethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Chloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Trichlorofluoromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1-Dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
trans-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1-dichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	94	
cis-1,2-dichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
bromochloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
chloroform	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	90	
2,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,2-dichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	94	
1,1,1-trichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	91	
1,1-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Cyclohexane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
carbon tetrachloride	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]	[NT]	[NT]	[NT]	[NT]	
dibromomethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,2-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
trichloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	88	
bromodichloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	105	
trans-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1,2-trichloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]	[NT]	[NT]	[NT]	[NT]	
1,3-dichloropropane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
dibromochloromethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	94	
1,2-dibromoethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
tetrachloroethene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	96	
1,1,1,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
chlorobenzene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
bromoform	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]	[NT]	[NT]	[NT]	[NT]	
styrene	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	mg/kg	1	Org-023	<1	[NT]	[NT]	[NT]	[NT]	[NT]	

QUALIT	Y CONTRO	L: VOCs	in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
isopropylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
bromobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-propyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
2-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-chlorotoluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3,5-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
tert-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trimethyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
sec-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,4-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-isopropyl toluene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-butyl benzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dibromo-3-chloropropane	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
hexachlorobutadiene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichlorobenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate Dibromofluorometha	%		Org-023	107	[NT]		[NT]	[NT]	108	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	69	[NT]		[NT]	[NT]	91	[NT]
Surrogate Toluene-d ₈	%		Org-023	109	[NT]		[NT]	[NT]	109	[NT]
Surrogate 4-Bromofluorobenzene	%		Org-023	114	[NT]		[NT]	[NT]	109	[NT]

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	94	[NT]
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	97	[NT]
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	98	[NT]
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	89	[NT]
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	94	[NT]
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	96	[NT]
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	69	[NT]		[NT]	[NT]	91	[NT]

QUALITY CONTROL: svTRH (C10-C40) in Soil						Duplicate Spike Reco				covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	15/09/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	105	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	123	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	105	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	96	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	123	
Surrogate o-Terphenyl	%		Org-020	77	[NT]	[NT]	[NT]	[NT]	116	[NT]

QUALITY CONTROL: PAHs in Soil						Duplicate Spike Reco				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	81	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	97	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	104	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	[NT]		[NT]	[NT]	88	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	98	[NT]	[NT]	[NT]	[NT]	94	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
НСВ	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	95	
Endrin	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	93	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	104	[NT]	[NT]	[NT]	[NT]	97	[NT]

QUALITY CONTRO	L: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	96	
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Ronnel	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
Malathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	127	
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Parathion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	99	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	104	[NT]		[NT]	[NT]	97	

QUALIT	Y CONTRO	L: PCBs i	n Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	100	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	104	[NT]	[NT]	[NT]	[NT]	97	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	92	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	92	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	81	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	80	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	81	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	99	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	84	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	84	

QUALITY	CONTROL:	Misc Soi	l - Inorg			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]
Total Phenolics (as Phenol)	mg/kg	5	Inorg-031	<5	[NT]	[NT]	[NT]	[NT]	102	[NT]

QUALITY CONTROL: Miscellaneous Inorg - soil Test Description Units PQL Method Blar Date prepared - 15/09/2						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			15/09/2020	[NT]		[NT]	[NT]	15/09/2020	[NT]
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	15/09/2020	[NT]
Ammonia as N in soil	mg/kg	0.5	Inorg-057	<0.5	[NT]	[NT]	[NT]	[NT]	105	[NT]

QUALITY	CONTROL:	Explosive	es in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date Extracted	-			15/09/2020	4	15/09/2020	15/09/2020		15/09/2020	[NT]
Date analysed	-			16/09/2020	4	15/09/2020	15/09/2020		16/09/2020	[NT]
нмх	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	118	[NT]
RDX	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	115	[NT]
1,3,5-Trinitrobenzene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	127	[NT]
1,3-Dinitrobenzene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	125	[NT]
Tetryl	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	112	[NT]
2,4,6-Trinitrotoluene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	126	[NT]
4-&2-AM-DNT(Isomeric Mixture)	mg/kg	0.2	Org-029	<0.2	4	<0.2	<0.2	0	113	[NT]
2,4-Dinitrotoluene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	89	[NT]
2,6-Dinitrotoluene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	96	[NT]
Nitrobenzene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	110	[NT]
2-Nitrotoluene & 4-Nitrotoluene	mg/kg	5	Org-029	<5	4	<5	<5	0	87	[NT]
3-Nitrotoluene	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	101	[NT]
Nitroglycerine	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	119	[NT]
PETN	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	117	[NT]
3,5-Dinitroaniline	mg/kg	0.1	Org-029	<0.1	4	<0.1	<0.1	0	84	[NT]
Surrogate (Dinitrobenzene)	%		Org-029	115	4	115	109	5	120	[NT]

QUALIT	Y CONTROL	.: VOCs i	n water			Dup	olicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			10/09/2020	[NT]	[NT]		[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]	[NT]		[NT]	11/09/2020	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	107	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	106	
2,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	114	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	111	
1,1-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	130	
Bromodichloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	98	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	99	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	108	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	

QUALIT	Y CONTROL	.: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Isopropylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Bromobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-propyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
2-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Tert-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,3-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Sec-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,4-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
4-isopropyl toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
n-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Hexachlorobutadiene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	[NT]
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	97	[NT]
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	[NT]
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	95	[NT]

QUALITY CONTR	ROL: vTRH(0	C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	108	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	97	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	95	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			12/09/2020	[NT]		[NT]	[NT]	12/09/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	95	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	90	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-020	109	[NT]	[NT]	[NT]	[NT]	73	[NT]

QUALITY CON	ITROL: PAH	ls in Wate	er - Low Level			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	81	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	91	
Phenanthrene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Anthracene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	89	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	90	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	85	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	103	[NT]	[NT]	[NT]	[NT]	86	[NT]
QUALITY CONTRO	DL: Organoc	hlorine P	esticides in Water			Du	plicate		Spike Re	covery %
---------------------	-------------	-----------	--------------------	------------	------	------	---------	------	------------	----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
alpha-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	88	
НСВ	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	83	
gamma-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	80	
delta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Aldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	84	
Heptachlor Epoxide	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	87	
gamma-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDE	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90	
Dieldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	84	
Endrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70	
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDD	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	80	
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDT	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	83	
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	96	[NT]	[NT]	[NT]	[NT]	87	[NT]

QUALITY CC	ONTROL: OF	P Pesticid	es in Water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]	
Date extracted	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020		
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020		
Dichlorvos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	92		
Dimethoate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Diazinon	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	89		
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	92		
Malathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	113		
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90		
Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	90		
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	88		
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-022/025	96	[NT]	[NT]	[NT]	[NT]	87	[NT]	

QUALITY	CONTROL	: PCBs ir	Water		Duplicate S					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Date analysed	-			15/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Aroclor 1016	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	92	
Aroclor 1260	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	96	[NT]		[NT]	[NT]	87	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date prepared	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	[NT]	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	95	[NT]	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	93	[NT]	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	97	[NT]	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	[NT]	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	104	[NT]	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	[NT]	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	95	[NT]	

QUALITY CO	NTROL: Tot	al Phenol	Du	plicate	Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Date analysed	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]		[NT]	[NT]	102	[NT]

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics		Du	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			09/09/2020	[NT]		[NT]	[NT]	09/09/2020	[NT]
Date analysed	-			09/09/2020	[NT]		[NT]	[NT]	09/09/2020	[NT]
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	100	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples were sub-sampled from jars provided by the client.

Douglas Partners

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		72505	5.19	······		Suburb	:	Randwid			To:	Envi	rolab Ser	vices Pty	Ltd
Project Name):	RCR	HRL			Order N	lumber					12 A	shley Str	eet, Ch <u>at</u>	swood, NSW 2067
Project Mana	ger:	Paul C	Gorman			Sample	er:	JJH		• •	Attn:	Ailee	en Hie		
Emails:		_ ∕ <u>ĭoel.jar</u>	nes-þáll;paul	.gormani@	douglaspar	tners.com.	au				Phone:	-			:
Date Require	d: /	Same	day 🗆	24 hours	s 🗆 🛛 48	Bhours □	72	nours 🛛	Stand	lard 🗹	Email:	Ahie	e@envirg	blab.com	.au
Prior Storage	e: 🗹 Es	sky 🗅	Fridge	Shelve	d	Do samp	les contair	n 'potential'	HBM?	No 🗹 ((If YES, then	handle, tra	nsport and s	store in acco	ordance with FPM HAZID)
			oled	Sample Type	Container Type				L	Analytes	•			<u>.</u>	
Sample ID	Depth Range	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8L	voc	pH, EC	Combo 3L	Combo 8a	Combo 3a	explosive + ammonia		· ·	Notes/preservation
BH608		1	08/09/20	w	G/P	X	x	X			-	: •			Separate jobs per
BD1/20200908		1	08/09/20	W .	G/P				X						Coc please
TP604	0.2-0.3	<i>ر ح</i> ر	07/04/20	S	G			ŝ			X			·	<u> </u>
TP604	0.4-0.5	Ý	07/04/20	S	G		x			×		X		•	
											•••	•		-	
											:		IVIROJ AB	Envirolal 12	Services Ashley St
					•								610U2 .	Chatswood I Ph: (02)	VSW 2057
												ļ.	<u> 00 No:</u>		150805
	4		· · ·		· .				•			Da	ite Received	1.	9/9/20
								· 1	•			Re	ceived By	ΪM	1415
		6 •										Te Co	np: Coolter	iblent-	
· ·												Se	curity: Intact	Broken/No	e
															· · · · · · · · · · · · · · · · · · ·
									:						
· · ·									•						·
PQL (S) mg/k			4							,		•		C PQLs	req'd for all water analytes 🛛
PQL = practic	cal quan	titation	limit. If n	one given	, default to	Laborato	ory Metho	d Detectio	n Limit	<u> </u>	Lab R	eport/Re	ference N	lo:	
Total number	Metals to Analyse: 8HM unless specified here:														
Send Results	s to:	Do	uglas Partn	ers Pty Lt	d Add	ress:	<u></u>						Phone:		Fax:
Signed	-	<u> </u>		· · · ·	Received	by: BA	JUL.	Comu	leme			Date & 1	Time: 🌒	922	1415

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman

Sample Login Details								
Your reference	92505.19, Randwick							
Envirolab Reference	250805							
Date Sample Received	09/09/2020							
Date Instructions Received	09/09/2020							
Date Results Expected to be Reported	16/09/2020							

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	2 Water, 2 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Holding time exceedance - sample 3 and 4

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoice accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in soil	VTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBsin Soil	Acid Extractable metalsin soil	Misc Soil - Inorg	Asbestos ID - soils	Ammonia as N in soil	Explosives in Soil	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	Organochlorine Pesticides in Water	OP Pesticides in Water	PCBs in Water	HM in water - dissolved	Total Phenolicsin Water	Hq	Electrical Conductivity
BH608													✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark	✓	✓
BD1/20200908														\checkmark	\checkmark	\checkmark				✓			
TP604-0.2-0.3		\checkmark	\checkmark	\checkmark				\checkmark		\checkmark													
TP604-0.4-0.5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓											

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 250807

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	72505.19, Randwick
Number of Samples	1 Water
Date samples received	09/09/2020
Date completed instructions received	09/09/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	16/09/2020
Date of Issue	15/09/2020
NATA Accreditation Number 2901. This do	ocument shall not be reproduced except in full.
Accredited for compliance with ISO/IEC 17	7025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 250807 Revision No: R00

Page | 1 of 27

VOCs in water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
Dichlorodifluoromethane	μg/L	<10
Chloromethane	µg/L	<10
Vinyl Chloride	μg/L	<10
Bromomethane	μg/L	<10
Chloroethane	µg/L	<10
Trichlorofluoromethane	µg/L	<10
1,1-Dichloroethene	µg/L	<1
Trans-1,2-dichloroethene	µg/L	<1
1,1-dichloroethane	µg/L	<1
Cis-1,2-dichloroethene	µg/L	<1
Bromochloromethane	µg/L	<1
Chloroform	µg/L	<1
2,2-dichloropropane	µg/L	<1
1,2-dichloroethane	µg/L	<1
1,1,1-trichloroethane	μg/L	<1
1,1-dichloropropene	μg/L	<1
Cyclohexane	μg/L	<1
Carbon tetrachloride	µg/L	<1
Benzene	μg/L	<1
Dibromomethane	μg/L	<1
1,2-dichloropropane	μg/L	<1
Trichloroethene	μg/L	<1
Bromodichloromethane	μg/L	<1
trans-1,3-dichloropropene	μg/L	<1
cis-1,3-dichloropropene	μg/L	<1
1,1,2-trichloroethane	μg/L	<1
Toluene	μg/L	<1
1,3-dichloropropane	μg/L	<1
Dibromochloromethane	μg/L	<1
1,2-dibromoethane	µg/L	<1
Tetrachloroethene	μg/L	<1
1,1,1,2-tetrachloroethane	μg/L	<1
Chlorobenzene	µg/L	<1
Ethylbenzene	µg/L	<1

VOCs in water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Bromoform	μg/L	<1
m+p-xylene	µg/L	<2
Styrene	µg/L	<1
1,1,2,2-tetrachloroethane	µg/L	<1
o-xylene	μg/L	<1
1,2,3-trichloropropane	µg/L	<1
Isopropylbenzene	µg/L	<1
Bromobenzene	µg/L	<1
n-propyl benzene	µg/L	<1
2-chlorotoluene	µg/L	<1
4-chlorotoluene	μg/L	<1
1,3,5-trimethyl benzene	µg/L	<1
Tert-butyl benzene	μg/L	<1
1,2,4-trimethyl benzene	µg/L	<1
1,3-dichlorobenzene	µg/L	<1
Sec-butyl benzene	µg/L	<1
1,4-dichlorobenzene	μg/L	<1
4-isopropyl toluene	µg/L	<1
1,2-dichlorobenzene	µg/L	<1
n-butyl benzene	µg/L	<1
1,2-dibromo-3-chloropropane	µg/L	<1
1,2,4-trichlorobenzene	µg/L	<1
Hexachlorobutadiene	μg/L	<1
1,2,3-trichlorobenzene	µg/L	<1
Surrogate Dibromofluoromethane	%	98
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	96

vTRH(C6-C10)/BTEXN in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
TRH C ₆ - C ₉	μg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10
МТВЕ	µg/L	<1
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	μg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	98
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	96

svTRH (C10-C40) in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
TRH C ₁₀ - C ₁₄	µg/L	95
TRH C ₁₅ - C ₂₈	µg/L	210
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	μg/L	75
TRH >C10 - C16 less Naphthalene (F2)	µg/L	75
TRH >C ₁₆ - C ₃₄	µg/L	220
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	#

PAHs in Water - Low Level		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
Naphthalene	µg/L	<0.2
Acenaphthylene	µg/L	<0.1
Acenaphthene	µg/L	<0.1
Fluorene	µg/L	<0.1
Phenanthrene	µg/L	<0.1
Anthracene	µg/L	<0.1
Fluoranthene	µg/L	<0.1
Pyrene	µg/L	<0.1
Benzo(a)anthracene	µg/L	<0.1
Chrysene	µg/L	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2
Benzo(a)pyrene	µg/L	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1
Benzo(a)pyrene TEQ	µg/L	<0.5
Total +ve PAH's	µg/L	<0.1
Surrogate p-Terphenyl-d14	%	80

Organochlorine Pesticides in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
alpha-BHC	µg/L	<0.2
НСВ	µg/L	<0.2
beta-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	77

OP Pesticides in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
Dichlorvos	µg/L	<0.2
Dimethoate	µg/L	<0.2
Diazinon	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Ronnel	µg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	μg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Parathion	μg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Ethion	µg/L	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2
Surrogate TCMX	%	77

PCBs in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	11/09/2020
Aroclor 1016	μg/L	<2
Aroclor 1221	µg/L	<2
Aroclor 1232	μg/L	<2
Aroclor 1242	µg/L	<2
Aroclor 1248	µg/L	<2
Aroclor 1254	µg/L	<2
Aroclor 1260	µg/L	<2
Surrogate TCMX	%	77

HM in water - dissolved		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date prepared	-	10/09/2020
Date analysed	-	10/09/2020
Arsenic-Dissolved	μg/L	1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	µg/L	2
Lead-Dissolved	µg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	2
Zinc-Dissolved	μg/L	<1

Total Phenolics in Water		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date extracted	-	10/09/2020
Date analysed	-	10/09/2020
Total Phenolics (as Phenol)	mg/L	<0.05

Miscellaneous Inorganics		
Our Reference		250807-1
Your Reference	UNITS	BH12
Date Sampled		08/09/2020
Type of sample		Water
Date prepared	-	09/09/2020
Date analysed	-	09/09/2020
рН	pH Units	7.8
Electrical Conductivity	μS/cm	540

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25°C in accordance with APHA latest edition 2510 and Rayment & Lyons.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTROL: VOCs in water					Dup	olicate		Spike Red	covery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			10/09/2020	[NT]	[NT]		[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]	[NT]		[NT]	11/09/2020	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	[NT]	[NT]		[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	107	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	106	
2,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	114	
1,1,1-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	111	
1,1-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromomethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	130	
Bromodichloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	98	
trans-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
cis-1,3-dichloropropene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2-trichloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Toluene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,3-dichloropropane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	99	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	108	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Chlorobenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
Bromoform	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]	[NT]		[NT]	[NT]	
Styrene	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	
1,1,2,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]	[NT]		[NT]	[NT]	

QUALIT	Y CONTROL	: VOCs i	n water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Isopropylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Bromobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-propyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
2-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Tert-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,3-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Sec-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,4-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
4-isopropyl toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
n-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2-dibromo-3-chloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Hexachlorobutadiene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]		[NT]
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	97	[NT]
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	[NT]
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	95	[NT]

QUALITY CONTR	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	Spike Re	covery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	110	
МТВЕ	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	114	
Toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	115	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	108	
o-xylene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
Naphthalene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	98	[NT]		[NT]	[NT]	97	
Surrogate toluene-d8	%		Org-023	99	[NT]		[NT]	[NT]	100	
Surrogate 4-BFB	%		Org-023	96	[NT]		[NT]	[NT]	95	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water			Duj	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	77	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	83	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	77	
Surrogate o-Terphenyl	%		Org-020	86	[NT]	[NT]	[NT]	[NT]	64	[NT]

QUALITY CON	ITROL: PAF	ls in Wate	er - Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Naphthalene	μg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	70	
Acenaphthylene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	73	
Fluorene	μg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	79	
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	76	
Anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	83	
Pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	98	
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	88	
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	72	
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	90	[NT]	[NT]	[NT]	[NT]	99	[NT]

QUALITY CONTRO	DL: Organoc	hlorine Po	esticides in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
alpha-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	79	
НСВ	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
beta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	74	
gamma-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Heptachlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	84	
delta-BHC	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Aldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	77	
Heptachlor Epoxide	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	77	
gamma-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
alpha-Chlordane	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDE	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	84	
Dieldrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	84	
Endrin	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	100	
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDD	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	77	
Endrin Aldehyde	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
pp-DDT	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	79	
Methoxychlor	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	78	[NT]	[NT]	[NT]	[NT]	88	[NT]

QUALITY CC	ONTROL: OF	P Pesticid	es in Water		Duplicate Spike Reg					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Dichlorvos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	88	
Dimethoate	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ronnel	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	89	
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	82	
Malathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	100	
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	75	
Parathion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	77	
Bromophos ethyl	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	88	
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-022/025	78	[NT]		[NT]	[NT]	88	

QUALITY CONTROL: PCBs in Water						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	
Date analysed	-			11/09/2020	[NT]		[NT]	[NT]	11/09/2020	
Aroclor 1016	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	100	
Aroclor 1260	µg/L	2	Org-021	<2	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-021	78	[NT]		[NT]	[NT]	88	

QUALITY CC		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Date analysed	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	100	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	99	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	103	[NT]
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	102	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]	[NT]	[NT]	[NT]	103	[NT]

QUALITY CO		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Date analysed	-			10/09/2020	[NT]		[NT]	[NT]	10/09/2020	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]		[NT]	[NT]	102	[NT]

QUALITY CONTROL: Miscellaneous Inorganics						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			09/09/2020	[NT]		[NT]	[NT]	09/09/2020	[NT]
Date analysed	-			09/09/2020	[NT]		[NT]	[NT]	09/09/2020	[NT]
рН	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	100	[NT]
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]		[NT]	[NT]	103	[NT]
Client Reference: 72505.19, Randwick

Result Definiti	Result Definitions							
NT	Not tested							
NA	Test not required							
INS	Insufficient sample for this test							
PQL	Practical Quantitation Limit							
<	Less than							
>	Greater than							
RPD	Relative Percent Difference							
LCS	Laboratory Control Sample							
NS	Not specified							
NEPM	National Environmental Protection Measure							
NR	Not Reported							

Client Reference: 72505.19, Randwick

Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.						
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.						
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.						
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.						
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.						

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate is not possible to report as the high concentration of analytes in sample 250807-1 has caused interference.

F.14 - CHAIN OF CUSTODY DESPATCH SHEET

Project No:		72505	5.19			Suburb);	Rándwic	k		To:	Envi	rolab Ser	vices Pty	Ltd
Project Name):):	RCR	HRL			Order N	lumber					12 A	shley Str	eet, Chate	swood, NSW 2067
Project Mana	ger:	Paul (Gorman			Sample	er:	JJH			Attn:	Ailee	en Hie		
Emails:		joel.jar	nes-hall paul	.gormani@	douglaspar	tners.com.	au				Phone:			· ·	
Date Require	d: /	Same	day 🛛	24 hours	s 🗆 🛛 48	hours [72	nours 🗆	Stand	lard 🗹	Email:	Ahie	@envirc	olab.com	au
Prior Storage	e: 🗹 Es	sky 🗹	Fridge 🛛	Shelve	d	Do samp	oles contair	n 'potential'	HBM?	No ⊡ (If YES, ther	handle, tra	nsport and s	store in acco	rdance with FPM HAZID)
			pled	Sample Type	Container Type		.3	· · · · ·	, <u>-</u>	Analytes	•	· .			: · · · ·
Sample ID	Depth Range	Lab ID	Date Sam	S - soil W - water	G - glass P - plastic	Combo 8L	voc	pH, EC	Combo 3L	Combo 8a	් Combo 3a	explosive + ammonia		-	Notes/preservation
BH12		(L)	08/09/20	W	G/P	x	x	x	· · · :.				****	····	. ·
													· · · · ·		
							· ·		1				·		
						1			<u>.</u>						
											Envirolab S	ervices tilev St	·		:
									EI	C C	hatswood NS	W 2067			· · · · · ·
·· *						,			Jo	o No:			2608	107	· · · · · · · · · · · · · · · · · · ·
									— Па	a Received	Linker			ua	6
······		· · · ·		· · · ·					Tin	e Received	IND				1415
								· · · · ·		nit CoalAr	bient				
							· · · ·		Co	oling/lee/let	pack				······································
		•							Se	curity. Intac	/Broken/No	he	·		· · · · · · · · · · · · · · · · · · ·
		ļ	·	、								•		·	· · · · · · · · · · · · · · · · · · ·
						1				·					· · ·
									•	-					
PQL (S) mg/													ANZEC	C PQLs I	req'd for all water analytes
PQL = practi	cal quan	titation	limit. If no	one given	i, default to	Laborato	ory Metho	d Detectio	n Limit		Lah R	enort/Ref	forence N		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Metals to An	alyse: 8l	IM unle	ss specifie	ed here:		:			· · ·.					<u> </u>	<u> </u>
Total numbe	r of sam	ples in	container:	D: '	Reli	nquished	by:		Transpo	orted to la	boratory	/ by:	Dh		
Send Results	s to:	Do	ugias Partn	ers Pty L		ress		<u> </u>			<u>`</u>		Phone		FdX
Signed.	bar	5		<u> </u>	Received	by: (MULEN	14				Date & 1	<u>ime: </u> ()	1/9/2	1415
								1		•				5, T	•

Page 1 of 1

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Paul Gorman

Sample Login Details	
Your reference	72505.19, Randwick
Envirolab Reference	250807
Date Sample Received	09/09/2020
Date Instructions Received	09/09/2020
Date Results Expected to be Reported	16/09/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	12.4
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water - Low Level	Organochlorine Pesticides in Water	Organophosphorus Pesticides in Soil	PCBs in Water	HM in water - dissolved	Total Phenolicsin Water	Hq	Electrical Conductivity
BH12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.